🐻🎉 Read AI Papers Together, every Thu 2pm ET: Sign Up

Big Red AI - AI Papers by Cornell Researchers


2025-01-16
🤖 Large Language Model is Secretly a Protein Sequence Optimizer
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.

2025-01-14
🤖 Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.

2025-01-13
🤖 Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.

2025-01-11
🤖 DiscQuant: A Quantization Method for Neural Networks Inspired by Discrepancy Theory
Quantizing the weights of a neural network has two steps: (1) Finding a good low bit-complexity representation for weights (which we call the quantization grid) and (2) Rounding the original weights to values in the quantization grid. In this paper, we study the problem of rounding optimally given any quantization grid. The simplest and most commonly used way to round is Round-to-Nearest (RTN). By rounding in a data-dependent way instead, one can improve the quality of the quantized model significantly. We study the rounding problem from the lens of \emph{discrepancy theory}, which studies how well we can round a continuous solution to a discrete solution without affecting solution quality too much. We prove that given $m=\mathrm{poly}(1/\epsilon)$ samples from the data distribution, we can round all but $O(m)$ model weights such that the expected approximation error of the quantized model on the true data distribution is $\le \epsilon$ as long as the space of gradients of the original model is approximately low rank (which we empirically validate). Our proof, which is algorithmic, inspired a simple and practical rounding algorithm called \emph{DiscQuant}. In our experiments, we demonstrate that DiscQuant significantly improves over the prior state-of-the-art rounding method called GPTQ and the baseline RTN over a range of benchmarks on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B to a fixed quantization grid with 3.25 bits per parameter using DiscQuant gets 64\% accuracy on the GSM8k dataset, whereas GPTQ achieves 54\% and RTN achieves 31\% (the original model achieves 84\%). We make our code available at https://github.com/jerry-chee/DiscQuant.

2025-01-06
🤖 Visual Large Language Models for Generalized and Specialized Applications
Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.

2025-01-02
🤖 CySecBench: Generative AI-based CyberSecurity-focused Prompt Dataset for Benchmarking Large Language Models
Numerous studies have investigated methods for jailbreaking Large Language Models (LLMs) to generate harmful content. Typically, these methods are evaluated using datasets of malicious prompts designed to bypass security policies established by LLM providers. However, the generally broad scope and open-ended nature of existing datasets can complicate the assessment of jailbreaking effectiveness, particularly in specific domains, notably cybersecurity. To address this issue, we present and publicly release CySecBench, a comprehensive dataset containing 12662 prompts specifically designed to evaluate jailbreaking techniques in the cybersecurity domain. The dataset is organized into 10 distinct attack-type categories, featuring close-ended prompts to enable a more consistent and accurate assessment of jailbreaking attempts. Furthermore, we detail our methodology for dataset generation and filtration, which can be adapted to create similar datasets in other domains. To demonstrate the utility of CySecBench, we propose and evaluate a jailbreaking approach based on prompt obfuscation. Our experimental results show that this method successfully elicits harmful content from commercial black-box LLMs, achieving Success Rates (SRs) of 65% with ChatGPT and 88% with Gemini; in contrast, Claude demonstrated greater resilience with a jailbreaking SR of 17%. Compared to existing benchmark approaches, our method shows superior performance, highlighting the value of domain-specific evaluation datasets for assessing LLM security measures. Moreover, when evaluated using prompts from a widely used dataset (i.e., AdvBench), it achieved an SR of 78.5%, higher than the state-of-the-art methods.

2025-01-02
🤖 Graph Generative Pre-trained Transformer
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction.

2024-12-30
🤖 NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics
Understanding the traffic dynamics in networks is a core capability for automated systems to monitor and analyze networking behaviors, reducing expensive human efforts and economic risks through tasks such as traffic classification, congestion prediction, and attack detection. However, it is still challenging to accurately model network traffic with machine learning approaches in an efficient and broadly applicable manner. Task-specific models trained from scratch are used for different networking applications, which limits the efficiency of model development and generalization of model deployment. Furthermore, while networking data is abundant, high-quality task-specific labels are often insufficient for training individual models. Large-scale self-supervised learning on unlabeled data provides a natural pathway for tackling these challenges. We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records, with the goal of fine-tuning for different downstream tasks with small amount of labels. Our presented NetFlowGen framework goes beyond a proof-of-concept for network traffic pre-training and addresses specific challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection. Experiments demonstrate promising results of our pre-training framework on capturing traffic dynamics and adapting to different networking tasks.

2024-12-28
🤖 How To Think About End-To-End Encryption and AI: Training, Processing, Disclosure, and Consent
End-to-end encryption (E2EE) has become the gold standard for securing communications, bringing strong confidentiality and privacy guarantees to billions of users worldwide. However, the current push towards widespread integration of artificial intelligence (AI) models, including in E2EE systems, raises some serious security concerns. This work performs a critical examination of the (in)compatibility of AI models and E2EE applications. We explore this on two fronts: (1) the integration of AI "assistants" within E2EE applications, and (2) the use of E2EE data for training AI models. We analyze the potential security implications of each, and identify conflicts with the security guarantees of E2EE. Then, we analyze legal implications of integrating AI models in E2EE applications, given how AI integration can undermine the confidentiality that E2EE promises. Finally, we offer a list of detailed recommendations based on our technical and legal analyses, including: technical design choices that must be prioritized to uphold E2EE security; how service providers must accurately represent E2EE security; and best practices for the default behavior of AI features and for requesting user consent. We hope this paper catalyzes an informed conversation on the tensions that arise between the brisk deployment of AI and the security offered by E2EE, and guides the responsible development of new AI features.

2024-12-27
🤖 Enhancing Cognitive Diagnosis by Modeling Learner Cognitive Structure State
Cognitive diagnosis represents a fundamental research area within intelligent education, with the objective of measuring the cognitive status of individuals. Theoretically, an individual's cognitive state is essentially equivalent to their cognitive structure state. Cognitive structure state comprises two key components: knowledge state (KS) and knowledge structure state (KUS). The knowledge state reflects the learner's mastery of individual concepts, a widely studied focus within cognitive diagnosis. In contrast, the knowledge structure state-representing the learner's understanding of the relationships between concepts-remains inadequately modeled. A learner's cognitive structure is essential for promoting meaningful learning and shaping academic performance. Although various methods have been proposed, most focus on assessing KS and fail to assess KUS. To bridge this gap, we propose an innovative and effective framework-CSCD (Cognitive Structure State-based Cognitive Diagnosis)-which introduces a novel framework to modeling learners' cognitive structures in diagnostic assessments, thereby offering new insights into cognitive structure modeling. Specifically, we employ an edge-feature-based graph attention network to represent the learner's cognitive structure state, effectively integrating KS and KUS. Extensive experiments conducted on real datasets demonstrate the superior performance of this framework in terms of diagnostic accuracy and interpretability.

2024-12-24
🤖 Consistency Checks for Language Model Forecasters
Forecasting is a task that is difficult to evaluate: the ground truth can only be known in the future. Recent work showing LLM forecasters rapidly approaching human-level performance begs the question: how can we benchmark and evaluate these forecasters instantaneously? Following the consistency check framework, we measure the performance of forecasters in terms of the consistency of their predictions on different logically-related questions. We propose a new, general consistency metric based on arbitrage: for example, if a forecasting AI illogically predicts that both the Democratic and Republican parties have 60% probability of winning the 2024 US presidential election, an arbitrageur can trade against the forecaster's predictions and make a profit. We build an automated evaluation system that generates a set of base questions, instantiates consistency checks from these questions, elicits the predictions of the forecaster, and measures the consistency of the predictions. We then build a standard, proper-scoring-rule forecasting benchmark, and show that our (instantaneous) consistency metrics correlate with LLM forecasters' ground truth Brier scores (which are only known in the future). We also release a consistency benchmark that resolves in 2028, providing a long-term evaluation tool for forecasting.

2024-12-22
🤖 AI-Based Teat Shape and Skin Condition Prediction for Dairy Management
Dairy owners spend significant effort to keep their animals healthy. There is good reason to hope that technologies such as computer vision and artificial intelligence (AI) could reduce these costs, yet obstacles arise when adapting advanced tools to farming environments. In this work, we adapt AI tools to dairy cow teat localization, teat shape, and teat skin condition classifications. We also curate a data collection and analysis methodology for a Machine Learning (ML) pipeline. The resulting teat shape prediction model achieves a mean Average Precision (mAP) of 0.783, and the teat skin condition model achieves a mean average precision of 0.828. Our work leverages existing ML vision models to facilitate the individualized identification of teat health and skin conditions, applying AI to the dairy management industry.

2024-12-21
🤖 V"Mean"ba: Visual State Space Models only need 1 hidden dimension
Vision transformers dominate image processing tasks due to their superior performance. However, the quadratic complexity of self-attention limits the scalability of these systems and their deployment on resource-constrained devices. State Space Models (SSMs) have emerged as a solution by introducing a linear recurrence mechanism, which reduces the complexity of sequence modeling from quadratic to linear. Recently, SSMs have been extended to high-resolution vision tasks. Nonetheless, the linear recurrence mechanism struggles to fully utilize matrix multiplication units on modern hardware, resulting in a computational bottleneck. We address this issue by introducing \textit{VMeanba}, a training-free compression method that eliminates the channel dimension in SSMs using mean operations. Our key observation is that the output activations of SSM blocks exhibit low variances across channels. Our \textit{VMeanba} leverages this property to optimize computation by averaging activation maps across the channel to reduce the computational overhead without compromising accuracy. Evaluations on image classification and semantic segmentation tasks demonstrate that \textit{VMeanba} achieves up to a 1.12x speedup with less than a 3\% accuracy loss. When combined with 40\% unstructured pruning, the accuracy drop remains under 3\%.

2024-12-20
🤖 Learning Disease Progression Models That Capture Health Disparities
Disease progression models are widely used to inform the diagnosis and treatment of many progressive diseases. However, a significant limitation of existing models is that they do not account for health disparities that can bias the observed data. To address this, we develop an interpretable Bayesian disease progression model that captures three key health disparities: certain patient populations may (1) start receiving care only when their disease is more severe, (2) experience faster disease progression even while receiving care, or (3) receive follow-up care less frequently conditional on disease severity. We show theoretically and empirically that failing to account for disparities produces biased estimates of severity (underestimating severity for disadvantaged groups, for example). On a dataset of heart failure patients, we show that our model can identify groups that face each type of health disparity, and that accounting for these disparities meaningfully shifts which patients are considered high-risk.

2024-12-19
🤖 Associative memory inspires improvements for in-context learning using a novel attention residual stream architecture
Large language models (LLMs) demonstrate an impressive ability to utilise information within the context of their input sequences to appropriately respond to data unseen by the LLM during its training procedure. This ability is known as in-context learning (ICL). Humans and non-human animals demonstrate similar abilities, however their neural architectures differ substantially from LLMs. Despite this, a critical component within LLMs, the attention mechanism, resembles modern associative memory models, widely used in and influenced by the computational neuroscience community to model biological memory systems. Using this connection, we introduce an associative memory model capable of performing ICL. We use this as inspiration for a novel residual stream architecture which allows information to directly flow between attention heads. We test this architecture during training within a two-layer Transformer and show its ICL abilities manifest more quickly than without this modification. We then apply our architecture in small language models with 8 million parameters, focusing on attention head values, with results also indicating improved ICL performance at this larger and more naturalistic scale.

2024-12-19
🤖 Pitfalls of topology-aware image segmentation
Topological correctness, i.e., the preservation of structural integrity and specific characteristics of shape, is a fundamental requirement for medical imaging tasks, such as neuron or vessel segmentation. Despite the recent surge in topology-aware methods addressing this challenge, their real-world applicability is hindered by flawed benchmarking practices. In this paper, we identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts in ground truth annotations, and inappropriate use of evaluation metrics. Through detailed empirical analysis, we uncover these issues' profound impact on the evaluation and ranking of segmentation methods. Drawing from our findings, we propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.

2024-12-18
🤖 A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.

2024-12-18
🤖 Dialogue with the Machine and Dialogue with the Art World: Evaluating Generative AI for Culturally-Situated Creativity
This paper proposes dialogue as a method for evaluating generative AI tools for culturally-situated creative practice, that recognizes the socially situated nature of art. Drawing on sociologist Howard Becker's concept of Art Worlds, this method expands the scope of traditional AI and creativity evaluations beyond benchmarks, user studies with crowd-workers, or focus groups conducted with artists. Our method involves two mutually informed dialogues: 1) 'dialogues with art worlds' placing artists in conversation with experts such as art historians, curators, and archivists, and 2)'dialogues with the machine,' facilitated through structured artist- and critic-led experimentation with state-of-the-art generative AI tools. We demonstrate the value of this method through a case study with artists and experts steeped in non-western art worlds, specifically the Persian Gulf. We trace how these dialogues help create culturally rich and situated forms of evaluation for representational possibilities of generative AI that mimic the reception of generative artwork in the broader art ecosystem. Putting artists in conversation with commentators also allow artists to shift their use of the tools to respond to their cultural and creative context. Our study can provide generative AI researchers an understanding of the complex dynamics of technology, human creativity and the socio-politics of art worlds, to build more inclusive machines for diverse art worlds.

2024-12-15
🤖 NITRO: LLM Inference on Intel Laptop NPUs
Large Language Models (LLMs) have become essential tools in natural language processing, finding large usage in chatbots such as ChatGPT and Gemini, and are a central area of research. A particular area of interest includes designing hardware specialized for these AI applications, with one such example being the neural processing unit (NPU). In 2023, Intel released the Intel Core Ultra processor with codename Meteor Lake, featuring a CPU, GPU, and NPU system-on-chip. However, official software support for the NPU through Intel's OpenVINO framework is limited to static model inference. The dynamic nature of autoregressive token generation in LLMs is therefore not supported out of the box. To address this shortcoming, we present NITRO (NPU Inference for Transformers Optimization), a Python-based framework built on top of OpenVINO to support text and chat generation on NPUs. In this paper, we discuss in detail the key modifications made to the transformer architecture to enable inference, some performance benchmarks, and future steps towards improving the package. The code repository for NITRO can be found here: https://github.com/abdelfattah-lab/nitro.

2024-12-13
🤖 Generative AI in Medicine
The increased capabilities of generative AI have dramatically expanded its possible use cases in medicine. We provide a comprehensive overview of generative AI use cases for clinicians, patients, clinical trial organizers, researchers, and trainees. We then discuss the many challenges -- including maintaining privacy and security, improving transparency and interpretability, upholding equity, and rigorously evaluating models -- which must be overcome to realize this potential, and the open research directions they give rise to.

2024-12-13
🤖 Edge AI-based Radio Frequency Fingerprinting for IoT Networks
The deployment of the Internet of Things (IoT) in smart cities and critical infrastructure has enhanced connectivity and real-time data exchange but introduced significant security challenges. While effective, cryptography can often be resource-intensive for small-footprint resource-constrained (i.e., IoT) devices. Radio Frequency Fingerprinting (RFF) offers a promising authentication alternative by using unique RF signal characteristics for device identification at the Physical (PHY)-layer, without resorting to cryptographic solutions. The challenge is two-fold: how to deploy such RFF in a large scale and for resource-constrained environments. Edge computing, processing data closer to its source, i.e., the wireless device, enables faster decision-making, reducing reliance on centralized cloud servers. Considering a modest edge device, we introduce two truly lightweight Edge AI-based RFF schemes tailored for resource-constrained devices. We implement two Deep Learning models, namely a Convolution Neural Network and a Transformer-Encoder, to extract complex features from the IQ samples, forming device-specific RF fingerprints. We convert the models to TensorFlow Lite and evaluate them on a Raspberry Pi, demonstrating the practicality of Edge deployment. Evaluations demonstrate the Transformer-Encoder outperforms the CNN in identifying unique transmitter features, achieving high accuracy (> 0.95) and ROC-AUC scores (> 0.90) while maintaining a compact model size of 73KB, appropriate for resource-constrained devices.

2024-12-10
🤖 GPT-2 Through the Lens of Vector Symbolic Architectures
Understanding the general priniciples behind transformer models remains a complex endeavor. Experiments with probing and disentangling features using sparse autoencoders (SAE) suggest that these models might manage linear features embedded as directions in the residual stream. This paper explores the resemblance between decoder-only transformer architecture and vector symbolic architectures (VSA) and presents experiments indicating that GPT-2 uses mechanisms involving nearly orthogonal vector bundling and binding operations similar to VSA for computation and communication between layers. It further shows that these principles help explain a significant portion of the actual neural weights.

2024-12-08
🤖 Fully Open Source Moxin-7B Technical Report
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, and some use restrictive licenses whilst claiming to be "open-source," which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed in accordance with the Model Openness Framework (MOF), a ranked classification system that evaluates AI models based on model completeness and openness, adhering to principles of open science, open source, open data, and open access. Our model achieves the highest MOF classification level of "open science" through the comprehensive release of pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints. Experiments show that our model achieves superior performance in zero-shot evaluation compared with popular 7B models and performs competitively in few-shot evaluation.

2024-12-06
🤖 Rethink Deep Learning with Invariance in Data Representation
Integrating invariance into data representations is a principled design in intelligent systems and web applications. Representations play a fundamental role, where systems and applications are both built on meaningful representations of digital inputs (rather than the raw data). In fact, the proper design/learning of such representations relies on priors w.r.t. the task of interest. Here, the concept of symmetry from the Erlangen Program may be the most fruitful prior -- informally, a symmetry of a system is a transformation that leaves a certain property of the system invariant. Symmetry priors are ubiquitous, e.g., translation as a symmetry of the object classification, where object category is invariant under translation. The quest for invariance is as old as pattern recognition and data mining itself. Invariant design has been the cornerstone of various representations in the era before deep learning, such as the SIFT. As we enter the early era of deep learning, the invariance principle is largely ignored and replaced by a data-driven paradigm, such as the CNN. However, this neglect did not last long before they encountered bottlenecks regarding robustness, interpretability, efficiency, and so on. The invariance principle has returned in the era of rethinking deep learning, forming a new field known as Geometric Deep Learning (GDL). In this tutorial, we will give a historical perspective of the invariance in data representations. More importantly, we will identify those research dilemmas, promising works, future directions, and web applications.

2024-12-05
🤖 From Models to Systems: A Comprehensive Fairness Framework for Compositional Recommender Systems
Fairness research in machine learning often centers on ensuring equitable performance of individual models. However, real-world recommendation systems are built on multiple models and even multiple stages, from candidate retrieval to scoring and serving, which raises challenges for responsible development and deployment. This system-level view, as highlighted by regulations like the EU AI Act, necessitates moving beyond auditing individual models as independent entities. We propose a holistic framework for modeling system-level fairness, focusing on the end-utility delivered to diverse user groups, and consider interactions between components such as retrieval and scoring models. We provide formal insights on the limitations of focusing solely on model-level fairness and highlight the need for alternative tools that account for heterogeneity in user preferences. To mitigate system-level disparities, we adapt closed-box optimization tools (e.g., BayesOpt) to jointly optimize utility and equity. We empirically demonstrate the effectiveness of our proposed framework on synthetic and real datasets, underscoring the need for a system-level framework.

2024-12-04
🤖 Surveying the Effects of Quality, Diversity, and Complexity in Synthetic Data From Large Language Models
Synthetic data generation with Large Language Models is a promising paradigm for augmenting natural data over a nearly infinite range of tasks. Given this variety, direct comparisons among synthetic data generation algorithms are scarce, making it difficult to understand where improvement comes from and what bottlenecks exist. We propose to evaluate algorithms via the makeup of synthetic data generated by each algorithm in terms of data quality, diversity, and complexity. We choose these three characteristics for their significance in open-ended processes and the impact each has on the capabilities of downstream models. We find quality to be essential for in-distribution model generalization, diversity to be essential for out-of-distribution generalization, and complexity to be beneficial for both. Further, we emphasize the existence of Quality-Diversity trade-offs in training data and the downstream effects on model performance. We then examine the effect of various components in the synthetic data pipeline on each data characteristic. This examination allows us to taxonomize and compare synthetic data generation algorithms through the components they utilize and the resulting effects on data QDC composition. This analysis extends into a discussion on the importance of balancing QDC in synthetic data for efficient reinforcement learning and self-improvement algorithms. Analogous to the QD trade-offs in training data, often there exist trade-offs between model output quality and output diversity which impact the composition of synthetic data. We observe that many models are currently evaluated and optimized only for output quality, thereby limiting output diversity and the potential for self-improvement. We argue that balancing these trade-offs is essential to the development of future self-improvement algorithms and highlight a number of works making progress in this direction.

2024-12-03
🤖 Social Media Informatics for Sustainable Cities and Societies: An Overview of the Applications, associated Challenges, and Potential Solutions
In the modern world, our cities and societies face several technological and societal challenges, such as rapid urbanization, global warming & climate change, the digital divide, and social inequalities, increasing the need for more sustainable cities and societies. Addressing these challenges requires a multifaceted approach involving all the stakeholders, sustainable planning, efficient resource management, innovative solutions, and modern technologies. Like other modern technologies, social media informatics also plays its part in developing more sustainable and resilient cities and societies. Despite its limitations, social media informatics has proven very effective in various sustainable cities and society applications. In this paper, we review and analyze the role of social media informatics in sustainable cities and society by providing a detailed overview of its applications, associated challenges, and potential solutions. This work is expected to provide a baseline for future research in the domain.

2024-12-02
🤖 Commit0: Library Generation from Scratch
With the goal of benchmarking generative systems beyond expert software development ability, we introduce Commit0, a benchmark that challenges AI agents to write libraries from scratch. Agents are provided with a specification document outlining the library's API as well as a suite of interactive unit tests, with the goal of producing an implementation of this API accordingly. The implementation is validated through running these unit tests. As a benchmark, Commit0 is designed to move beyond static one-shot code generation towards agents that must process long-form natural language specifications, adapt to multi-stage feedback, and generate code with complex dependencies. Commit0 also offers an interactive environment where models receive static analysis and execution feedback on the code they generate. Our experiments demonstrate that while current agents can pass some unit tests, none can yet fully reproduce full libraries. Results also show that interactive feedback is quite useful for models to generate code that passes more unit tests, validating the benchmarks that facilitate its use.

2024-11-27
🤖 SoK: Watermarking for AI-Generated Content
As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.

2024-11-21
🤖 A No Free Lunch Theorem for Human-AI Collaboration
The gold standard in human-AI collaboration is complementarity -- when combined performance exceeds both the human and algorithm alone. We investigate this challenge in binary classification settings where the goal is to maximize 0-1 accuracy. Given two or more agents who can make calibrated probabilistic predictions, we show a "No Free Lunch"-style result. Any deterministic collaboration strategy (a function mapping calibrated probabilities into binary classifications) that does not essentially always defer to the same agent will sometimes perform worse than the least accurate agent. In other words, complementarity cannot be achieved "for free." The result does suggest one model of collaboration with guarantees, where one agent identifies "obvious" errors of the other agent. We also use the result to understand the necessary conditions enabling the success of other collaboration techniques, providing guidance to human-AI collaboration.

2024-11-21
🤖 Assessment of LLM Responses to End-user Security Questions
Answering end user security questions is challenging. While large language models (LLMs) like GPT, LLAMA, and Gemini are far from error-free, they have shown promise in answering a variety of questions outside of security. We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions. While LLMs demonstrate broad generalist ``knowledge'' of end user security information, there are patterns of errors and limitations across LLMs consisting of stale and inaccurate answers, and indirect or unresponsive communication styles, all of which impacts the quality of information received. Based on these patterns, we suggest directions for model improvement and recommend user strategies for interacting with LLMs when seeking assistance with security.

2024-11-15
🤖 Steering AI-Driven Personalization of Scientific Text for General Audiences
Digital media platforms (e.g., social media, science blogs) offer opportunities to communicate scientific content to general audiences at scale. However, these audiences vary in their scientific expertise, literacy levels, and personal backgrounds, making effective science communication challenging. To address this challenge, we designed TranSlider, an AI-powered tool that generates personalized translations of scientific text based on individual user profiles (e.g., hobbies, location, and education). Our tool features an interactive slider that allows users to steer the degree of personalization from 0 (weakly relatable) to 100 (strongly relatable), leveraging LLMs to generate the translations with given degrees. Through an exploratory study with 15 participants, we investigated both the utility of these AI-personalized translations and how interactive reading features influenced users' understanding and reading experiences. We found that participants who preferred higher degrees of personalization appreciated the relatable and contextual translations, while those who preferred lower degrees valued concise translations with subtle contextualization. Furthermore, participants reported the compounding effect of multiple translations on their understanding of scientific content. Given these findings, we discuss several implications of AI-personalized translation tools in facilitating communication in collaborative contexts.

2024-11-13
🤖 DeepUQ: Assessing the Aleatoric Uncertainties from two Deep Learning Methods
Assessing the quality of aleatoric uncertainty estimates from uncertainty quantification (UQ) deep learning methods is important in scientific contexts, where uncertainty is physically meaningful and important to characterize and interpret exactly. We systematically compare aleatoric uncertainty measured by two UQ techniques, Deep Ensembles (DE) and Deep Evidential Regression (DER). Our method focuses on both zero-dimensional (0D) and two-dimensional (2D) data, to explore how the UQ methods function for different data dimensionalities. We investigate uncertainty injected on the input and output variables and include a method to propagate uncertainty in the case of input uncertainty so that we can compare the predicted aleatoric uncertainty to the known values. We experiment with three levels of noise. The aleatoric uncertainty predicted across all models and experiments scales with the injected noise level. However, the predicted uncertainty is miscalibrated to $\rm{std}(\sigma_{\rm al})$ with the true uncertainty for half of the DE experiments and almost all of the DER experiments. The predicted uncertainty is the least accurate for both UQ methods for the 2D input uncertainty experiment and the high-noise level. While these results do not apply to more complex data, they highlight that further research on post-facto calibration for these methods would be beneficial, particularly for high-noise and high-dimensional settings.

2024-11-13
🤖 Separating Tongue from Thought: Activation Patching Reveals Language-Agnostic Concept Representations in Transformers
A central question in multilingual language modeling is whether large language models (LLMs) develop a universal concept representation, disentangled from specific languages. In this paper, we address this question by analyzing latent representations (latents) during a word translation task in transformer-based LLMs. We strategically extract latents from a source translation prompt and insert them into the forward pass on a target translation prompt. By doing so, we find that the output language is encoded in the latent at an earlier layer than the concept to be translated. Building on this insight, we conduct two key experiments. First, we demonstrate that we can change the concept without changing the language and vice versa through activation patching alone. Second, we show that patching with the mean over latents across different languages does not impair and instead improves the models' performance in translating the concept. Our results provide evidence for the existence of language-agnostic concept representations within the investigated models.

2024-11-13
🤖 Estimating unknown parameters in differential equations with a reinforcement learning based PSO method
Differential equations offer a foundational yet powerful framework for modeling interactions within complex dynamic systems and are widely applied across numerous scientific fields. One common challenge in this area is estimating the unknown parameters of these dynamic relationships. However, traditional numerical optimization methods rely on the selection of initial parameter values, making them prone to local optima. Meanwhile, deep learning and Bayesian methods require training models on specific differential equations, resulting in poor versatility. This paper reformulates the parameter estimation problem of differential equations as an optimization problem by introducing the concept of particles from the particle swarm optimization algorithm. Building on reinforcement learning-based particle swarm optimization (RLLPSO), this paper proposes a novel method, DERLPSO, for estimating unknown parameters of differential equations. We compared its performance on three typical ordinary differential equations with the state-of-the-art methods, including the RLLPSO algorithm, traditional numerical methods, deep learning approaches, and Bayesian methods. The experimental results demonstrate that our DERLPSO consistently outperforms other methods in terms of performance, achieving an average Mean Square Error of 1.13e-05, which reduces the error by approximately 4 orders of magnitude compared to other methods. Apart from ordinary differential equations, our DERLPSO also show great promise for estimating unknown parameters of partial differential equations. The DERLPSO method proposed in this paper has high accuracy, is independent of initial parameter values, and possesses strong versatility and stability. This work provides new insights into unknown parameter estimation for differential equations.

2024-11-11
🤖 Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.

2024-11-11
🤖 Controllable Context Sensitivity and the Knob Behind It
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.

2024-11-07
🤖 FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI
We introduce FrontierMath, a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians. The questions cover most major branches of modern mathematics -- from computationally intensive problems in number theory and real analysis to abstract questions in algebraic geometry and category theory. Solving a typical problem requires multiple hours of effort from a researcher in the relevant branch of mathematics, and for the upper end questions, multiple days. FrontierMath uses new, unpublished problems and automated verification to reliably evaluate models while minimizing risk of data contamination. Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community. As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.

2024-11-06
🤖 DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.

2024-11-04
🤖 Combining Induction and Transduction for Abstract Reasoning
When learning an input-output mapping from very few examples, is it better to first infer a latent function that explains the examples, or is it better to directly predict new test outputs, e.g. using a neural network? We study this question on ARC, a highly diverse dataset of abstract reasoning tasks. We train neural models for induction (inferring latent functions) and transduction (directly predicting the test output for a given test input). Our models are trained on synthetic data generated by prompting LLMs to produce Python code specifying a function to be inferred, plus a stochastic subroutine for generating inputs to that function. We find inductive and transductive models solve very different problems, despite training on the same problems, and despite sharing the same neural architecture.

2024-11-02
🤖 Interacting Large Language Model Agents. Interpretable Models and Social Learning
This paper develops theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making by interacting LLMAs remains unexplored. Motivated by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control algorithms that enable LLMAs to interact and perform Bayesian inference. Because interacting LLMAs learn from prior decisions and external inputs, they exhibit bias and herding behavior. Thus, developing interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors. This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics that an individual LLMA satisfies the sufficient conditions for rationally inattentive (bounded rationality) utility maximization and, given an observation, the LLMA chooses an action that maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models for LLMAs that interact sequentially with each other and the environment while performing Bayesian inference. Our models capture the herding behavior exhibited by interacting LLMAs. Third, we propose a stochastic control framework to delay herding and improve state estimation accuracy under two settings: (a) centrally controlled LLMAs and (b) autonomous LLMAs with incentives. Throughout the paper, we demonstrate the efficacy of our methods on real datasets for hate speech classification and product quality assessment, using open-source models like Mistral and closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social learning when interacting.

2024-11-01
🤖 From Fake Perfects to Conversational Imperfects: Exploring Image-Generative AI as a Boundary Object for Participatory Design of Public Spaces
Designing public spaces requires balancing the interests of diverse stakeholders within a constrained physical and institutional space. Designers usually approach these problems through participatory methods but struggle to incorporate diverse perspectives into design outputs. The growing capabilities of image-generative artificial intelligence (IGAI) could support participatory design. Prior work in leveraging IGAI's capabilities in design has focused on augmenting the experience and performance of individual creators. We study how IGAI could facilitate participatory processes when designing public spaces, a complex collaborative task. We conducted workshops and IGAI-mediated interviews in a real-world participatory process to upgrade a park in Los Angeles. We found (1) a shift from focusing on accuracy to fostering richer conversations as the desirable outcome of adopting IGAI in participatory design, (2) that IGAI promoted more space-aware conversations, and (3) that IGAI-mediated conversations are subject to the abilities of the facilitators in managing the interaction between themselves, the AI, and stakeholders. We contribute by discussing practical implications for using IGAI in participatory design, including success metrics, relevant skills, and asymmetries between designers and stakeholders. We finish by proposing a series of open research questions.

2024-11-01
🤖 Exploratory Models of Human-AI Teams: Leveraging Human Digital Twins to Investigate Trust Development
As human-agent teaming (HAT) research continues to grow, computational methods for modeling HAT behaviors and measuring HAT effectiveness also continue to develop. One rising method involves the use of human digital twins (HDT) to approximate human behaviors and socio-emotional-cognitive reactions to AI-driven agent team members. In this paper, we address three research questions relating to the use of digital twins for modeling trust in HATs. First, to address the question of how we can appropriately model and operationalize HAT trust through HDT HAT experiments, we conducted causal analytics of team communication data to understand the impact of empathy, socio-cognitive, and emotional constructs on trust formation. Additionally, we reflect on the current state of the HAT trust science to discuss characteristics of HAT trust that must be replicable by a HDT such as individual differences in trust tendencies, emergent trust patterns, and appropriate measurement of these characteristics over time. Second, to address the question of how valid measures of HDT trust are for approximating human trust in HATs, we discuss the properties of HDT trust: self-report measures, interaction-based measures, and compliance type behavioral measures. Additionally, we share results of preliminary simulations comparing different LLM models for generating HDT communications and analyze their ability to replicate human-like trust dynamics. Third, to address how HAT experimental manipulations will extend to human digital twin studies, we share experimental design focusing on propensity to trust for HDTs vs. transparency and competency-based trust for AI agents.

2024-10-31
🤖 AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
Clouds in satellite imagery pose a significant challenge for downstream applications. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address this problem, we introduce the largest public dataset -- $\textit{AllClear}$ for cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with diverse land-use patterns, comprising 4 million images in total. Each ROI includes complete temporal captures from the year 2022, with (1) multi-spectral optical imagery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks and land cover maps. We validate the effectiveness of our dataset by benchmarking performance, demonstrating the scaling law -- the PSNR rises from $28.47$ to $33.87$ with $30\times$ more data, and conducting ablation studies on the temporal length and the importance of individual modalities. This dataset aims to provide comprehensive coverage of the Earth's surface and promote better cloud removal results.

2024-10-30
🤖 eDOC: Explainable Decoding Out-of-domain Cell Types with Evidential Learning
Single-cell RNA-seq (scRNA-seq) technology is a powerful tool for unraveling the complexity of biological systems. One of essential and fundamental tasks in scRNA-seq data analysis is Cell Type Annotation (CTA). In spite of tremendous efforts in developing machine learning methods for this problem, several challenges remains. They include identifying Out-of-Domain (OOD) cell types, quantifying the uncertainty of unseen cell type annotations, and determining interpretable cell type-specific gene drivers for an OOD case. OOD cell types are often associated with therapeutic responses and disease origins, making them critical for precision medicine and early disease diagnosis. Additionally, scRNA-seq data contains tens thousands of gene expressions. Pinpointing gene drivers underlying CTA can provide deep insight into gene regulatory mechanisms and serve as disease biomarkers. In this study, we develop a new method, eDOC, to address aforementioned challenges. eDOC leverages a transformer architecture with evidential learning to annotate In-Domain (IND) and OOD cell types as well as to highlight genes that contribute both IND cells and OOD cells in a single cell resolution. Rigorous experiments demonstrate that eDOC significantly improves the efficiency and effectiveness of OOD cell type and gene driver identification compared to other state-of-the-art methods. Our findings suggest that eDOC may provide new insights into single-cell biology.

2024-10-30
🤖 VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning
Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.

2024-10-30
🤖 Thoughtful Adoption of NLP for Civic Participation: Understanding Differences Among Policymakers
Natural language processing (NLP) tools have the potential to boost civic participation and enhance democratic processes because they can significantly increase governments' capacity to gather and analyze citizen opinions. However, their adoption in government remains limited, and harnessing their benefits while preventing unintended consequences remains a challenge. While prior work has focused on improving NLP performance, this work examines how different internal government stakeholders influence NLP tools' thoughtful adoption. We interviewed seven politicians (politically appointed officials as heads of government institutions) and thirteen public servants (career government employees who design and administrate policy interventions), inquiring how they choose whether and how to use NLP tools to support civic participation processes. The interviews suggest that policymakers across both groups focused on their needs for career advancement and the need to showcase the legitimacy and fairness of their work when considering NLP tool adoption and use. Because these needs vary between politicians and public servants, their preferred NLP features and tool designs also differ. Interestingly, despite their differing needs and opinions, neither group clearly identifies who should advocate for NLP adoption to enhance civic participation or address the unintended consequences of a poorly considered adoption. This lack of clarity in responsibility might have caused the governments' low adoption of NLP tools. We discuss how these findings reveal new insights for future HCI research. They inform the design of NLP tools for increasing civic participation efficiency and capacity, the design of other tools and methods that ensure thoughtful adoption of AI tools in government, and the design of NLP tools for collaborative use among users with different incentives and needs.

2024-10-30
🤖 Designing AI Personalities: Enhancing Human-Agent Interaction Through Thoughtful Persona Design
In the rapidly evolving field of artificial intelligence (AI) agents, designing the agent's characteristics is crucial for shaping user experience. This workshop aims to establish a research community focused on AI agent persona design for various contexts, such as in-car assistants, educational tools, and smart home environments. We will explore critical aspects of persona design, such as voice, embodiment, and demographics, and their impact on user satisfaction and engagement. Through discussions and hands-on activities, we aim to propose practices and standards that enhance the ecological validity of agent personas. Topics include the design of conversational interfaces, the influence of agent personas on user experience, and approaches for creating contextually appropriate AI agents. This workshop will provide a platform for building a community dedicated to developing AI agent personas that better fit diverse, everyday interactions.

2024-10-28
🤖 AiSciVision: A Framework for Specializing Large Multimodal Models in Scientific Image Classification
Trust and interpretability are crucial for the use of Artificial Intelligence (AI) in scientific research, but current models often operate as black boxes offering limited transparency and justifications for their outputs. We introduce AiSciVision, a framework that specializes Large Multimodal Models (LMMs) into interactive research partners and classification models for image classification tasks in niche scientific domains. Our framework uses two key components: (1) Visual Retrieval-Augmented Generation (VisRAG) and (2) domain-specific tools utilized in an agentic workflow. To classify a target image, AiSciVision first retrieves the most similar positive and negative labeled images as context for the LMM. Then the LMM agent actively selects and applies tools to manipulate and inspect the target image over multiple rounds, refining its analysis before making a final prediction. These VisRAG and tooling components are designed to mirror the processes of domain experts, as humans often compare new data to similar examples and use specialized tools to manipulate and inspect images before arriving at a conclusion. Each inference produces both a prediction and a natural language transcript detailing the reasoning and tool usage that led to the prediction. We evaluate AiSciVision on three real-world scientific image classification datasets: detecting the presence of aquaculture ponds, diseased eelgrass, and solar panels. Across these datasets, our method outperforms fully supervised models in low and full-labeled data settings. AiSciVision is actively deployed in real-world use, specifically for aquaculture research, through a dedicated web application that displays and allows the expert users to converse with the transcripts. This work represents a crucial step toward AI systems that are both interpretable and effective, advancing their use in scientific research and scientific discovery.

2024-10-28
🤖 TurboHopp: Accelerated Molecule Scaffold Hopping with Consistency Models
Navigating the vast chemical space of druggable compounds is a formidable challenge in drug discovery, where generative models are increasingly employed to identify viable candidates. Conditional 3D structure-based drug design (3D-SBDD) models, which take into account complex three-dimensional interactions and molecular geometries, are particularly promising. Scaffold hopping is an efficient strategy that facilitates the identification of similar active compounds by strategically modifying the core structure of molecules, effectively narrowing the wide chemical space and enhancing the discovery of drug-like products. However, the practical application of 3D-SBDD generative models is hampered by their slow processing speeds. To address this bottleneck, we introduce TurboHopp, an accelerated pocket-conditioned 3D scaffold hopping model that merges the strategic effectiveness of traditional scaffold hopping with rapid generation capabilities of consistency models. This synergy not only enhances efficiency but also significantly boosts generation speeds, achieving up to 30 times faster inference speed as well as superior generation quality compared to existing diffusion-based models, establishing TurboHopp as a powerful tool in drug discovery. Supported by faster inference speed, we further optimize our model, using Reinforcement Learning for Consistency Models (RLCM), to output desirable molecules. We demonstrate the broad applicability of TurboHopp across multiple drug discovery scenarios, underscoring its potential in diverse molecular settings.

2024-10-27
🤖 Props for Machine-Learning Security
We propose protected pipelines or props for short, a new approach for authenticated, privacy-preserving access to deep-web data for machine learning (ML). By permitting secure use of vast sources of deep-web data, props address the systemic bottleneck of limited high-quality training data in ML development. Props also enable privacy-preserving and trustworthy forms of inference, allowing for safe use of sensitive data in ML applications. Props are practically realizable today by leveraging privacy-preserving oracle systems initially developed for blockchain applications.

2024-10-27
🤖 R-LLaVA: Improving Med-VQA Understanding through Visual Region of Interest
Artificial intelligence has made significant strides in medical visual question answering (Med-VQA), yet prevalent studies often interpret images holistically, overlooking the visual regions of interest that may contain crucial information, potentially aligning with a doctor's prior knowledge that can be incorporated with minimal annotations (e.g., bounding boxes). To address this gap, this paper introduces R-LLaVA, designed to enhance biomedical VQA understanding by integrating simple medical annotations as prior knowledge directly into the image space through CLIP. These annotated visual regions of interest are then fed into the LLaVA model during training, aiming to enrich the model's understanding of biomedical queries. Experimental evaluation on four standard Med-VQA datasets demonstrates R-LLaVA's superiority over existing state-of-the-art (SoTA) methods. Additionally, to verify the model's capability in visual comprehension, a novel multiple-choice medical visual understanding dataset is introduced, confirming the positive impact of focusing on visual regions of interest in advancing biomedical VQA understanding.

2024-10-23
🤖 Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection
Federated Learning (FL) is a decentralized approach for collaborative model training on edge devices. This distributed method of model training offers advantages in privacy, security, regulatory compliance, and cost-efficiency. Our emphasis in this research lies in addressing statistical complexity in FL, especially when the data stored locally across devices is not identically and independently distributed (non-IID). We have observed an accuracy reduction of up to approximately 10\% to 30\%, particularly in skewed scenarios where each edge device trains with only 1 class of data. This reduction is attributed to weight divergence, quantified using the Euclidean distance between device-level class distributions and the population distribution, resulting in a bias term (\(\delta_k\)). As a solution, we present a method to improve convergence in FL by creating a global subset of data on the server and dynamically distributing it across devices using a Dynamic Data queue-driven Federated Learning (DDFL). Next, we leverage Data Entropy metrics to observe the process during each training round and enable reasonable device selection for aggregation. Furthermore, we provide a convergence analysis of our proposed DDFL to justify their viability in practical FL scenarios, aiming for better device selection, a non-sub-optimal global model, and faster convergence. We observe that our approach results in a substantial accuracy boost of approximately 5\% for the MNIST dataset, around 18\% for CIFAR-10, and 20\% for CIFAR-100 with a 10\% global subset of data, outperforming the state-of-the-art (SOTA) aggregation algorithms.

2024-10-22
🤖 Permutation Picture of Graph Combinatorial Optimization Problems
This paper proposes a framework that formulates a wide range of graph combinatorial optimization problems using permutation-based representations. These problems include the travelling salesman problem, maximum independent set, maximum cut, and various other related problems. This work potentially opens up new avenues for algorithm design in neural combinatorial optimization, bridging the gap between discrete and continuous optimization techniques.

2024-10-21
🤖 Domain-Adaptive Neural Posterior Estimation for Strong Gravitational Lens Analysis
Modeling strong gravitational lenses is prohibitively expensive for modern and next-generation cosmic survey data. Neural posterior estimation (NPE), a simulation-based inference (SBI) approach, has been studied as an avenue for efficient analysis of strong lensing data. However, NPE has not been demonstrated to perform well on out-of-domain target data -- e.g., when trained on simulated data and then applied to real, observational data. In this work, we perform the first study of the efficacy of NPE in combination with unsupervised domain adaptation (UDA). The source domain is noiseless, and the target domain has noise mimicking modern cosmology surveys. We find that combining UDA and NPE improves the accuracy of the inference by 1-2 orders of magnitude and significantly improves the posterior coverage over an NPE model without UDA. We anticipate that this combination of approaches will help enable future applications of NPE models to real observational data.

2024-10-21
🤖 Compute-Constrained Data Selection
Data selection can reduce the amount of training data needed to finetune LLMs; however, the efficacy of data selection scales directly with its compute. Motivated by the practical challenge of compute-constrained finetuning, we consider the setting in which both the cost of selecting data and training are budgeted for. We first formalize the problem of data selection with a cost-aware utility function, and model the data selection problem as trading off initial-selection cost for training gain. We run a comprehensive sweep of experiments across multiple tasks, varying compute budget by scaling finetuning tokens, model sizes, and data selection compute. These experiments show the validity of this model in real-world experiments. Interestingly we find that many powerful data selection methods are almost never compute-optimal, and that cheaper data selection alternatives dominate both from a theoretical and empirical perspective.

2024-10-20
🤖 How Aligned are Generative Models to Humans in High-Stakes Decision-Making?
Large generative models (LMs) are increasingly being considered for high-stakes decision-making. This work considers how such models compare to humans and predictive AI models on a specific case of recidivism prediction. We combine three datasets -- COMPAS predictive AI risk scores, human recidivism judgements, and photos -- into a dataset on which we study the properties of several state-of-the-art, multimodal LMs. Beyond accuracy and bias, we focus on studying human-LM alignment on the task of recidivism prediction. We investigate if these models can be steered towards human decisions, the impact of adding photos, and whether anti-discimination prompting is effective. We find that LMs can be steered to outperform humans and COMPAS using in context-learning. We find anti-discrimination prompting to have unintended effects, causing some models to inhibit themselves and significantly reduce their number of positive predictions.

2024-10-19
🤖 Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models
Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM) -- which enhances models with up-to-date knowledge -- emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel \textbf{CO}arse-to-\textbf{F}ine highligh\textbf{T}ing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: \textit{recaller}, \textit{scorer}, and \textit{selector}. First, \textit{recaller} applies a knowledge graph to extract potential key entities in a given context. Second, \textit{scorer} measures the importance of each entity by calculating its contextual weight. Finally, \textit{selector} selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on the knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over $30\%$ in the F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.

2024-10-19
🤖 Generalized Flow Matching for Transition Dynamics Modeling
Simulating transition dynamics between metastable states is a fundamental challenge in dynamical systems and stochastic processes with wide real-world applications in understanding protein folding, chemical reactions and neural activities. However, the computational challenge often lies on sampling exponentially many paths in which only a small fraction ends in the target metastable state due to existence of high energy barriers. To amortize the cost, we propose a data-driven approach to warm-up the simulation by learning nonlinear interpolations from local dynamics. Specifically, we infer a potential energy function from local dynamics data. To find plausible paths between two metastable states, we formulate a generalized flow matching framework that learns a vector field to sample propable paths between the two marginal densities under the learned energy function. Furthermore, we iteratively refine the model by assigning importance weights to the sampled paths and buffering more likely paths for training. We validate the effectiveness of the proposed method to sample probable paths on both synthetic and real-world molecular systems.

2024-10-17
🤖 Retrospective Learning from Interactions
Multi-turn interactions between large language models (LLMs) and users naturally include implicit feedback signals. If an LLM responds in an unexpected way to an instruction, the user is likely to signal it by rephrasing the request, expressing frustration, or pivoting to an alternative task. Such signals are task-independent and occupy a relatively constrained subspace of language, allowing the LLM to identify them even if it fails on the actual task. This creates an avenue for continually learning from interactions without additional annotations. We introduce ReSpect, a method to learn from such signals in past interactions via retrospection. We deploy ReSpect in a new multimodal interaction scenario, where humans instruct an LLM to solve an abstract reasoning task with a combinatorial solution space. Through thousands of interactions with humans, we show how ReSpect gradually improves task completion rate from 31% to 82%, all without any external annotation.

2024-10-17
🤖 Quamba: A Post-Training Quantization Recipe for Selective State Space Models
State Space Models (SSMs) have emerged as an appealing alternative to Transformers for large language models, achieving state-of-the-art accuracy with constant memory complexity which allows for holding longer context lengths than attention-based networks. The superior computational efficiency of SSMs in long sequence modeling positions them favorably over Transformers in many scenarios. However, improving the efficiency of SSMs on request-intensive cloud-serving and resource-limited edge applications is still a formidable task. SSM quantization is a possible solution to this problem, making SSMs more suitable for wide deployment, while still maintaining their accuracy. Quantization is a common technique to reduce the model size and to utilize the low bit-width acceleration features on modern computing units, yet existing quantization techniques are poorly suited for SSMs. Most notably, SSMs have highly sensitive feature maps within the selective scan mechanism (i.e., linear recurrence) and massive outliers in the output activations which are not present in the output of token-mixing in the self-attention modules. To address this issue, we propose a static 8-bit per-tensor SSM quantization method which suppresses the maximum values of the input activations to the selective SSM for finer quantization precision and quantizes the output activations in an outlier-free space with Hadamard transform. Our 8-bit weight-activation quantized Mamba 2.8B SSM benefits from hardware acceleration and achieves a 1.72x lower generation latency on an Nvidia Orin Nano 8G, with only a 0.9% drop in average accuracy on zero-shot tasks. The experiments demonstrate the effectiveness and practical applicability of our approach for deploying SSM-based models of all sizes on both cloud and edge platforms.

2024-10-13
🤖 Honest AI: Fine-Tuning "Small" Language Models to Say "I Don't Know", and Reducing Hallucination in RAG
Hallucination is a key roadblock for applications of Large Language Models (LLMs), particularly for enterprise applications that are sensitive to information accuracy. To address this issue, two general approaches have been explored: Retrieval-Augmented Generation (RAG) to supply LLMs with updated information as context, and fine-tuning the LLMs with new information and desired output styles. In this paper, we propose Honest AI: a novel strategy to fine-tune "small" language models to say "I don't know" to reduce hallucination, along with several alternative RAG approaches. The solution ranked 1st in Task 2 for the false premise question. The alternative approaches include using RAG with search engine and knowledge graph results, fine-tuning base LLMs with new information and combinations of both approaches. Although all approaches improve the performance of the LLMs, RAG alone does not significantly improve the performance and fine-tuning is needed for better results. Finally, the hybrid approach achieved the highest score in the CRAG benchmark. In addition, our approach emphasizes the use of relatively small models with fewer than 10 billion parameters, promoting resource efficiency.

2024-10-10
🤖 Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling
Rare event sampling in dynamical systems is a fundamental problem arising in the natural sciences, which poses significant computational challenges due to an exponentially large space of trajectories. For settings where the dynamical system of interest follows a Brownian motion with known drift, the question of conditioning the process to reach a given endpoint or desired rare event is definitively answered by Doob's h-transform. However, the naive estimation of this transform is infeasible, as it requires simulating sufficiently many forward trajectories to estimate rare event probabilities. In this work, we propose a variational formulation of Doob's h-transform as an optimization problem over trajectories between a given initial point and the desired ending point. To solve this optimization, we propose a simulation-free training objective with a model parameterization that imposes the desired boundary conditions by design. Our approach significantly reduces the search space over trajectories and avoids expensive trajectory simulation and inefficient importance sampling estimators which are required in existing methods. We demonstrate the ability of our method to find feasible transition paths on real-world molecular simulation and protein folding tasks.

2024-10-09
🤖 Taking a turn for the better: Conversation redirection throughout the course of mental-health therapy
Mental-health therapy involves a complex conversation flow in which patients and therapists continuously negotiate what should be talked about next. For example, therapists might try to shift the conversation's direction to keep the therapeutic process on track and avoid stagnation, or patients might push the discussion towards issues they want to focus on. How do such patient and therapist redirections relate to the development and quality of their relationship? To answer this question, we introduce a probabilistic measure of the extent to which a certain utterance immediately redirects the flow of the conversation, accounting for both the intention and the actual realization of such a change. We apply this new measure to characterize the development of patient-therapist relationships over multiple sessions in a very large, widely-used online therapy platform. Our analysis reveals that (1) patient control of the conversation's direction generally increases relative to that of the therapist as their relationship progresses; and (2) patients who have less control in the first few sessions are significantly more likely to eventually express dissatisfaction with their therapist and terminate the relationship.

2024-10-09
🤖 Examining the Prevalence and Dynamics of AI-Generated Media in Art Subreddits
Broadly accessible generative AI models like Dall-E have made it possible for anyone to create compelling visual art. In online communities, the introduction of AI-generated content (AIGC) may impact community dynamics by shifting the kinds of content being posted or the responses to content suspected of being generated by AI. We take steps towards examining the potential impact of AIGC on art-related communities on Reddit. We distinguish between communities that disallow AI content and those without a direct policy. We look at image-based posts made to these communities that are transparently created by AI, or comments in these communities that suspect authors of using generative AI. We find that AI posts (and accusations) have played a very small part in these communities through the end of 2023, accounting for fewer than 0.2% of the image-based posts. Even as the absolute number of author-labelled AI posts dwindles over time, accusations of AI use remain more persistent. We show that AI content is more readily used by newcomers and may help increase participation if it aligns with community rules. However, the tone of comments suspecting AI use by others have become more negative over time, especially in communities that do not have explicit rules about AI. Overall, the results show the changing norms and interactions around AIGC in online communities designated for creativity.

2024-10-07
🤖 LLMs Are In-Context Reinforcement Learners
Large Language Models (LLMs) can learn new tasks through in-context supervised learning (i.e., ICL). This work studies if this ability extends to in-context reinforcement learning (ICRL), where models are not given gold labels in context, but only their past predictions and rewards. We show that a naive application of ICRL fails miserably, and identify the root cause as a fundamental deficiency at exploration, which leads to quick model degeneration. We propose an algorithm to address this deficiency by increasing test-time compute, as well as a compute-bound approximation. We use several challenging classification tasks to empirically show that our ICRL algorithms lead to effective learning from rewards alone, and analyze the characteristics of this ability and our methods. Overall, our results reveal remarkable ICRL abilities in LLMs.

2024-10-07
🤖 Better than Your Teacher: LLM Agents that learn from Privileged AI Feedback
While large language models (LLMs) show impressive decision-making abilities, current methods lack a mechanism for automatic self-improvement from errors during task execution. We propose LEAP, an iterative fine-tuning framework that continually improves LLM agents using feedback from AI expert teachers. Our key insight is to equip the expert teachers with a privileged state -- information that is available during training but hidden at test time. This allows even weak experts to provide precise guidance, significantly improving the student agent's performance without access to privileged information at test time. We evaluate LEAP on diverse decision-making benchmarks, including text-based games (ALFWorld), web navigation (WebShop), and interactive coding (Intercode Bash). Our experiments show that LEAP (1) outperforms behavior cloning and ReAct baselines (2) enables weak student models (e.g., Llama3-8B) to exceed the performance of strong teacher models (GPT4-o), and (3) allows weak models to self-improve using privileged versions of themselves. We also provide a theoretical analysis showing that LEAP's success hinges on balancing privileged information with the student's realizability, which we empirically validate. Our code is available at https://leap-llm.github.io

2024-10-06
🤖 Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.

2024-10-05
🤖 Reward Learning From Preference With Ties
Reward learning plays a pivotal role in Reinforcement Learning from Human Feedback (RLHF), ensuring the alignment of language models. The Bradley-Terry (BT) model stands as the prevalent choice for capturing human preferences from datasets containing pairs of chosen and rejected responses. In preference modeling, the focus is not on absolute values but rather on the reward difference between chosen and rejected responses, referred to as preference strength. Thus, precise evaluation of preference strength holds paramount importance in preference modeling. However, an easily overlooked factor significantly affecting preference strength measurement is that human attitudes towards two responses may not solely indicate a preference for one over the other and ties are also a common occurrence. To address this, we propose the adoption of the generalized Bradley-Terry model -- the Bradley-Terry model with ties (BTT) -- to accommodate tied preferences, thus leveraging additional information. We prove that even with the access to the true distributions of prompt and response, disregarding ties can lead to a notable bias in preference strength measurement. Comprehensive experiments further validate the advantages of incorporating ties in preference modeling. Notably, fine-tuning with BTT significantly outperforms fine-tuning with BT on synthetic preference datasets with ties, labeled by state-of-the-art open-source LLMs.

2024-10-04
🤖 SWE-bench Multimodal: Do AI Systems Generalize to Visual Software Domains?
Autonomous systems for software engineering are now capable of fixing bugs and developing features. These systems are commonly evaluated on SWE-bench (Jimenez et al., 2024a), which assesses their ability to solve software issues from GitHub repositories. However, SWE-bench uses only Python repositories, with problem statements presented predominantly as text and lacking visual elements such as images. This limited coverage motivates our inquiry into how existing systems might perform on unrepresented software engineering domains (e.g., front-end, game development, DevOps), which use different programming languages and paradigms. Therefore, we propose SWE-bench Multimodal (SWE-bench M), to evaluate systems on their ability to fix bugs in visual, user-facing JavaScript software. SWE-bench M features 617 task instances collected from 17 JavaScript libraries used for web interface design, diagramming, data visualization, syntax highlighting, and interactive mapping. Each SWE-bench M task instance contains at least one image in its problem statement or unit tests. Our analysis finds that top-performing SWE-bench systems struggle with SWE-bench M, revealing limitations in visual problem-solving and cross-language generalization. Lastly, we show that SWE-agent's flexible language-agnostic features enable it to substantially outperform alternatives on SWE-bench M, resolving 12% of task instances compared to 6% for the next best system.

2024-10-03
🤖 Contextual Document Embeddings
Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder.

2024-10-02
🤖 Reasoning Elicitation in Language Models via Counterfactual Feedback
Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.

2024-09-30
🤖 Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning
Despite its widespread use in neural networks, error backpropagation has faced criticism for its lack of biological plausibility, suffering from issues such as the backward locking problem and the weight transport problem. These limitations have motivated researchers to explore more biologically plausible learning algorithms that could potentially shed light on how biological neural systems adapt and learn. Inspired by the counter-current exchange mechanisms observed in biological systems, we propose counter-current learning (CCL), a biologically plausible framework for credit assignment in neural networks. This framework employs a feedforward network to process input data and a feedback network to process targets, with each network enhancing the other through anti-parallel signal propagation. By leveraging the more informative signals from the bottom layer of the feedback network to guide the updates of the top layer of the feedforward network and vice versa, CCL enables the simultaneous transformation of source inputs to target outputs and the dynamic mutual influence of these transformations. Experimental results on MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets using multi-layer perceptrons and convolutional neural networks demonstrate that CCL achieves comparable performance to other biologically plausible algorithms while offering a more biologically realistic learning mechanism. Furthermore, we showcase the applicability of our approach to an autoencoder task, underscoring its potential for unsupervised representation learning. Our work presents a direction for biologically inspired and plausible learning algorithms, offering an alternative mechanisms of learning and adaptation in neural networks.

2024-09-30
🤖 Maia-2: A Unified Model for Human-AI Alignment in Chess
There are an increasing number of domains in which artificial intelligence (AI) systems both surpass human ability and accurately model human behavior. This introduces the possibility of algorithmically-informed teaching in these domains through more relatable AI partners and deeper insights into human decision-making. Critical to achieving this goal, however, is coherently modeling human behavior at various skill levels. Chess is an ideal model system for conducting research into this kind of human-AI alignment, with its rich history as a pivotal testbed for AI research, mature superhuman AI systems like AlphaZero, and precise measurements of skill via chess rating systems. Previous work in modeling human decision-making in chess uses completely independent models to capture human style at different skill levels, meaning they lack coherence in their ability to adapt to the full spectrum of human improvement and are ultimately limited in their effectiveness as AI partners and teaching tools. In this work, we propose a unified modeling approach for human-AI alignment in chess that coherently captures human style across different skill levels and directly captures how people improve. Recognizing the complex, non-linear nature of human learning, we introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions, enabling our model to be sensitive to evolving player skill. Our experimental results demonstrate that this unified framework significantly enhances the alignment between AI and human players across a diverse range of expertise levels, paving the way for deeper insights into human decision-making and AI-guided teaching tools.

2024-09-30
🤖 Classification of Radiological Text in Small and Imbalanced Datasets in a Non-English Language
Natural language processing (NLP) in the medical domain can underperform in real-world applications involving small datasets in a non-English language with few labeled samples and imbalanced classes. There is yet no consensus on how to approach this problem. We evaluated a set of NLP models including BERT-like transformers, few-shot learning with sentence transformers (SetFit), and prompted large language models (LLM), using three datasets of radiology reports on magnetic resonance images of epilepsy patients in Danish, a low-resource language. Our results indicate that BERT-like models pretrained in the target domain of radiology reports currently offer the optimal performances for this scenario. Notably, the SetFit and LLM models underperformed compared to BERT-like models, with LLM performing the worst. Importantly, none of the models investigated was sufficiently accurate to allow for text classification without any supervision. However, they show potential for data filtering, which could reduce the amount of manual labeling required.

2024-09-29
🤖 Towards Robust Extractive Question Answering Models: Rethinking the Training Methodology
This paper proposes a novel training method to improve the robustness of Extractive Question Answering (EQA) models. Previous research has shown that existing models, when trained on EQA datasets that include unanswerable questions, demonstrate a significant lack of robustness against distribution shifts and adversarial attacks. Despite this, the inclusion of unanswerable questions in EQA training datasets is essential for ensuring real-world reliability. Our proposed training method includes a novel loss function for the EQA problem and challenges an implicit assumption present in numerous EQA datasets. Models trained with our method maintain in-domain performance while achieving a notable improvement on out-of-domain datasets. This results in an overall F1 score improvement of 5.7 across all testing sets. Furthermore, our models exhibit significantly enhanced robustness against two types of adversarial attacks, with a performance decrease of only about a third compared to the default models.

2024-09-27
🤖 Multimodal Pragmatic Jailbreak on Text-to-image Models
Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two close-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from 8\% to 74\%. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while current classifiers may be effective for single modality detection, they fail to work against our jailbreak. Our work provides a foundation for further development towards more secure and reliable T2I models.

2024-09-26
🤖 Adjusting Regression Models for Conditional Uncertainty Calibration
Conformal Prediction methods have finite-sample distribution-free marginal coverage guarantees. However, they generally do not offer conditional coverage guarantees, which can be important for high-stakes decisions. In this paper, we propose a novel algorithm to train a regression function to improve the conditional coverage after applying the split conformal prediction procedure. We establish an upper bound for the miscoverage gap between the conditional coverage and the nominal coverage rate and propose an end-to-end algorithm to control this upper bound. We demonstrate the efficacy of our method empirically on synthetic and real-world datasets.

2024-09-25
🤖 Neural Network Plasticity and Loss Sharpness
In recent years, continual learning, a prediction setting in which the problem environment may evolve over time, has become an increasingly popular research field due to the framework's gearing towards complex, non-stationary objectives. Learning such objectives requires plasticity, or the ability of a neural network to adapt its predictions to a different task. Recent findings indicate that plasticity loss on new tasks is highly related to loss landscape sharpness in non-stationary RL frameworks. We explore the usage of sharpness regularization techniques, which seek out smooth minima and have been touted for their generalization capabilities in vanilla prediction settings, in efforts to combat plasticity loss. Our findings indicate that such techniques have no significant effect on reducing plasticity loss.

2024-09-25
🤖 Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering
Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current large language models still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities.In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.

2024-09-25
🤖 Blox-Net: Generative Design-for-Robot-Assembly Using VLM Supervision, Physics Simulation, and a Robot with Reset
Generative AI systems have shown impressive capabilities in creating text, code, and images. Inspired by the rich history of research in industrial ''Design for Assembly'', we introduce a novel problem: Generative Design-for-Robot-Assembly (GDfRA). The task is to generate an assembly based on a natural language prompt (e.g., ''giraffe'') and an image of available physical components, such as 3D-printed blocks. The output is an assembly, a spatial arrangement of these components, and instructions for a robot to build this assembly. The output must 1) resemble the requested object and 2) be reliably assembled by a 6 DoF robot arm with a suction gripper. We then present Blox-Net, a GDfRA system that combines generative vision language models with well-established methods in computer vision, simulation, perturbation analysis, motion planning, and physical robot experimentation to solve a class of GDfRA problems with minimal human supervision. Blox-Net achieved a Top-1 accuracy of 63.5% in the ''recognizability'' of its designed assemblies (eg, resembling giraffe as judged by a VLM). These designs, after automated perturbation redesign, were reliably assembled by a robot, achieving near-perfect success across 10 consecutive assembly iterations with human intervention only during reset prior to assembly. Surprisingly, this entire design process from textual word (''giraffe'') to reliable physical assembly is performed with zero human intervention.

2024-09-23
🤖 The Palomar twilight survey of 'Ayló'chaxnim, Atiras, and comets
Near-sun sky twilight observations allow for the detection of asteroid interior to the orbit of Venus (Aylos), the Earth (Atiras), and comets. We present the results of observations with the Palomar 48-inch telescope (P48)/Zwicky Transient Facility (ZTF) camera in 30 s r-band exposures taken during evening astronomical twilight from 2019 Sep 20 to 2022 March 7 and during morning astronomical twilight sky from 2019 Sep 21 to 2022 Sep 29. More than 46,000 exposures were taken in evening and morning astronomical twilight within 31 to 66 degrees from the Sun with an r-band limiting magnitude between 18.1 and 20.9. The twilight pointings show a slight seasonal dependence in limiting magnitude and ability to point closer towards the Sun, with limiting magnitude slightly improving during summer. In total, the one Aylo, (594913) 'Ayl\'o'chaxnim, and 4 Atiras, 2020 OV1, 2021 BS1, 2021 PB2, and 2021 VR3, were discovered in evening and morning twilight observations. Additional twilight survey discoveries also include 6 long-period comets: C/2020 T2, C/2020 V2, C/2021 D2, C/2021 E3, C/2022 E3, and C/2022 P3, and two short-period comets: P/2021 N1 and P/2022 P2 using deep learning comet detection pipelines. The P48/ZTF twilight survey also recovered 11 known Atiras, one Aylo, three short-period comes, two long-period comets, and one interstellar object. Lastly, the Vera Rubin Observatory will conduct a twilight survey starting in its first year of operations and will cover the sky within 45 degrees of the Sun. Twilight surveys such as those by ZTF and future surveys will provide opportunities for discovering asteroids inside the orbits of Earth and Venus.

2024-09-23
🤖 GEM-RAG: Graphical Eigen Memories For Retrieval Augmented Generation
The ability to form, retrieve, and reason about memories in response to stimuli serves as the cornerstone for general intelligence - shaping entities capable of learning, adaptation, and intuitive insight. Large Language Models (LLMs) have proven their ability, given the proper memories or context, to reason and respond meaningfully to stimuli. However, they are still unable to optimally encode, store, and retrieve memories - the ability to do this would unlock their full ability to operate as AI agents, and to specialize to niche domains. To remedy this, one promising area of research is Retrieval Augmented Generation (RAG), which aims to augment LLMs by providing them with rich in-context examples and information. In question-answering (QA) applications, RAG methods embed the text of interest in chunks, and retrieve the most relevant chunks for a prompt using text embeddings. Motivated by human memory encoding and retrieval, we aim to improve over standard RAG methods by generating and encoding higher-level information and tagging the chunks by their utility to answer questions. We introduce Graphical Eigen Memories For Retrieval Augmented Generation (GEM-RAG). GEM-RAG works by tagging each chunk of text in a given text corpus with LLM generated ``utility'' questions, connecting chunks in a graph based on the similarity of both their text and utility questions, and then using the eigendecomposition of the memory graph to build higher level summary nodes that capture the main themes of the text. We evaluate GEM-RAG, using both UnifiedQA and GPT-3.5 Turbo as the LLMs, with SBERT, and OpenAI's text encoders on two standard QA tasks, showing that GEM-RAG outperforms other state-of-the-art RAG methods on these tasks. We also discuss the implications of having a robust RAG system and future directions.

2024-09-23
🤖 SEAL: Suite for Evaluating API-use of LLMs
Large language models (LLMs) have limitations in handling tasks that require real-time access to external APIs. While several benchmarks like ToolBench and APIGen have been developed to assess LLMs' API-use capabilities, they often suffer from issues such as lack of generalizability, limited multi-step reasoning coverage, and instability due to real-time API fluctuations. In this paper, we introduce SEAL, an end-to-end testbed designed to evaluate LLMs in real-world API usage. SEAL standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs by introducing a GPT-4-powered API simulator with caching for deterministic evaluations. Our testbed provides a comprehensive evaluation pipeline that covers API retrieval, API calls, and final responses, offering a reliable framework for structured performance comparison in diverse real-world scenarios. SEAL is publicly available, with ongoing updates for new benchmarks.

2024-09-22
🤖 OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength
Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search, and it mainly contains two steps to find the high-performance architecture: First, the DARTS supernet that consists of mixed operations will be optimized via gradient descent. Second, the final architecture will be built by the selected operations that contribute the most to the supernet. Although DARTS improves the efficiency of NAS, it suffers from the well-known degeneration issue which can lead to deteriorating architectures. Existing works mainly attribute the degeneration issue to the failure of its supernet optimization, while little attention has been paid to the selection method. In this paper, we cease to apply the widely-used magnitude-based selection method and propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss. We show that the degeneration issue can be effectively addressed by using the proposed criterion without any modification of supernet optimization, indicating that the magnitude-based selection method can be a critical reason for the instability of DARTS. The experiments on NAS-Bench-201 and DARTS search spaces show the effectiveness of our method.

2024-09-21
🤖 KALIE: Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data
Building generalist robotic systems involves effectively endowing robots with the capabilities to handle novel objects in an open-world setting. Inspired by the advances of large pre-trained models, we propose Keypoint Affordance Learning from Imagined Environments (KALIE), which adapts pre-trained Vision Language Models (VLMs) for robotic control in a scalable manner. Instead of directly producing motor commands, KALIE controls the robot by predicting point-based affordance representations based on natural language instructions and visual observations of the scene. The VLM is trained on 2D images with affordances labeled by humans, bypassing the need for training data collected on robotic systems. Through an affordance-aware data synthesis pipeline, KALIE automatically creates massive high-quality training data based on limited example data manually collected by humans. We demonstrate that KALIE can learn to robustly solve new manipulation tasks with unseen objects given only 50 example data points. Compared to baselines using pre-trained VLMs, our approach consistently achieves superior performance.

2024-09-17
🤖 Self-Contrastive Forward-Forward Algorithm
The Forward-Forward (FF) algorithm is a recent, purely forward-mode learning method, that updates weights locally and layer-wise and supports supervised as well as unsupervised learning. These features make it ideal for applications such as brain-inspired learning, low-power hardware neural networks, and distributed learning in large models. However, while FF has shown promise on written digit recognition tasks, its performance on natural images and time-series remains a challenge. A key limitation is the need to generate high-quality negative examples for contrastive learning, especially in unsupervised tasks, where versatile solutions are currently lacking. To address this, we introduce the Self-Contrastive Forward-Forward (SCFF) method, inspired by self-supervised contrastive learning. SCFF generates positive and negative examples applicable across different datasets, surpassing existing local forward algorithms for unsupervised classification accuracy on MNIST (MLP: 98.7%), CIFAR-10 (CNN: 80.75%), and STL-10 (CNN: 77.3%). Additionally, SCFF is the first to enable FF training of recurrent neural networks, opening the door to more complex tasks and continuous-time video and text processing.

2024-09-17
🤖 AI Suggestions Homogenize Writing Toward Western Styles and Diminish Cultural Nuances
Large language models (LLMs) are being increasingly integrated into everyday products and services, such as coding tools and writing assistants. As these embedded AI applications are deployed globally, there is a growing concern that the AI models underlying these applications prioritize Western values. This paper investigates what happens when a Western-centric AI model provides writing suggestions to users from a different cultural background. We conducted a cross-cultural controlled experiment with 118 participants from India and the United States who completed culturally grounded writing tasks with and without AI suggestions. Our analysis reveals that AI provided greater efficiency gains for Americans compared to Indians. Moreover, AI suggestions led Indian participants to adopt Western writing styles, altering not just what is written but also how it is written. These findings show that Western-centric AI models homogenize writing toward Western norms, diminishing nuances that differentiate cultural expression.

2024-09-16
🤖 Flash STU: Fast Spectral Transform Units
This paper describes an efficient, open source PyTorch implementation of the Spectral Transform Unit. We investigate sequence prediction tasks over several modalities including language, robotics, and simulated dynamical systems. We find that for the same parameter count, the STU and its variants outperform the Transformer as well as other leading state space models across various modalities.

2024-09-15
🤖 From Challenges and Pitfalls to Recommendations and Opportunities: Implementing Federated Learning in Healthcare
Federated learning holds great potential for enabling large-scale healthcare research and collaboration across multiple centres while ensuring data privacy and security are not compromised. Although numerous recent studies suggest or utilize federated learning based methods in healthcare, it remains unclear which ones have potential clinical utility. This review paper considers and analyzes the most recent studies up to May 2024 that describe federated learning based methods in healthcare. After a thorough review, we find that the vast majority are not appropriate for clinical use due to their methodological flaws and/or underlying biases which include but are not limited to privacy concerns, generalization issues, and communication costs. As a result, the effectiveness of federated learning in healthcare is significantly compromised. To overcome these challenges, we provide recommendations and promising opportunities that might be implemented to resolve these problems and improve the quality of model development in federated learning with healthcare.

2024-09-15
🤖 MindScape Study: Integrating LLM and Behavioral Sensing for Personalized AI-Driven Journaling Experiences
Mental health concerns are prevalent among college students, highlighting the need for effective interventions that promote self-awareness and holistic well-being. MindScape pioneers a novel approach to AI-powered journaling by integrating passively collected behavioral patterns such as conversational engagement, sleep, and location with Large Language Models (LLMs). This integration creates a highly personalized and context-aware journaling experience, enhancing self-awareness and well-being by embedding behavioral intelligence into AI. We present an 8-week exploratory study with 20 college students, demonstrating the MindScape app's efficacy in enhancing positive affect (7%), reducing negative affect (11%), loneliness (6%), and anxiety and depression, with a significant week-over-week decrease in PHQ-4 scores (-0.25 coefficient), alongside improvements in mindfulness (7%) and self-reflection (6%). The study highlights the advantages of contextual AI journaling, with participants particularly appreciating the tailored prompts and insights provided by the MindScape app. Our analysis also includes a comparison of responses to AI-driven contextual versus generic prompts, participant feedback insights, and proposed strategies for leveraging contextual AI journaling to improve well-being on college campuses. By showcasing the potential of contextual AI journaling to support mental health, we provide a foundation for further investigation into the effects of contextual AI journaling on mental health and well-being.

2024-09-12
🤖 Unleashing Worms and Extracting Data: Escalating the Outcome of Attacks against RAG-based Inference in Scale and Severity Using Jailbreaking
In this paper, we show that with the ability to jailbreak a GenAI model, attackers can escalate the outcome of attacks against RAG-based GenAI-powered applications in severity and scale. In the first part of the paper, we show that attackers can escalate RAG membership inference attacks and RAG entity extraction attacks to RAG documents extraction attacks, forcing a more severe outcome compared to existing attacks. We evaluate the results obtained from three extraction methods, the influence of the type and the size of five embeddings algorithms employed, the size of the provided context, and the GenAI engine. We show that attackers can extract 80%-99.8% of the data stored in the database used by the RAG of a Q&A chatbot. In the second part of the paper, we show that attackers can escalate the scale of RAG data poisoning attacks from compromising a single GenAI-powered application to compromising the entire GenAI ecosystem, forcing a greater scale of damage. This is done by crafting an adversarial self-replicating prompt that triggers a chain reaction of a computer worm within the ecosystem and forces each affected application to perform a malicious activity and compromise the RAG of additional applications. We evaluate the performance of the worm in creating a chain of confidential data extraction about users within a GenAI ecosystem of GenAI-powered email assistants and analyze how the performance of the worm is affected by the size of the context, the adversarial self-replicating prompt used, the type and size of the embeddings algorithm employed, and the number of hops in the propagation. Finally, we review and analyze guardrails to protect RAG-based inference and discuss the tradeoffs.

2024-09-11
🤖 Neural Algorithmic Reasoning with Multiple Correct Solutions
Neural Algorithmic Reasoning (NAR) aims to optimize classical algorithms. However, canonical implementations of NAR train neural networks to return only a single solution, even when there are multiple correct solutions to a problem, such as single-source shortest paths. For some applications, it is desirable to recover more than one correct solution. To that end, we give the first method for NAR with multiple solutions. We demonstrate our method on two classical algorithms: Bellman-Ford (BF) and Depth-First Search (DFS), favouring deeper insight into two algorithms over a broader survey of algorithms. This method involves generating appropriate training data as well as sampling and validating solutions from model output. Each step of our method, which can serve as a framework for neural algorithmic reasoning beyond the tasks presented in this paper, might be of independent interest to the field and our results represent the first attempt at this task in the NAR literature.

2024-09-10
🤖 One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, directly translating such demonstrations into robot-executable actions poses significant challenges due to execution mismatches, such as different movement styles and physical capabilities. Existing methods either rely on robot-demonstrator paired data, which is infeasible to scale, or overly rely on frame-level visual similarities, which fail to hold. To address these challenges, we propose RHyME, a novel framework that automatically establishes task execution correspondences between the robot and the demonstrator by using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human demonstrations by retrieving and composing similar short-horizon human clips, facilitating effective policy training without the need for paired data. We show that RHyME outperforms a range of baselines across various cross-embodiment datasets on all degrees of mismatches. Through detailed analysis, we uncover insights for learning and leveraging cross-embodiment visual representations.

2024-09-09
🤖 A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data
Alzheimer's Disease is an incurable cognitive condition that affects thousands of people globally. While some diagnostic methods exist for Alzheimer's Disease, many of these methods cannot detect Alzheimer's in its earlier stages. Recently, researchers have explored the use of Electroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a noninvasive method of recording the brain's electrical signals, and EEG data has shown distinct differences between patients with and without Alzheimer's. In the past, Artificial Neural Networks (ANNs) have been used to predict Alzheimer's from EEG data, but these models sometimes produce false positive diagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold Networks (KANs) across multiple types of epochs, learning rates, and nodes. The results show that across these different parameters, ANNs are more accurate in predicting Alzheimer's Disease from EEG signals.

2024-09-07
🤖 Action is the primary key: a categorical framework for episode description and logical reasoning
This research presents a computational framework for describing and recognizing episodes and for logical reasoning. This framework, named cognitive-logs, consists of a set of relational and graph databases. Cognitive-logs record knowledge, particularly in episodes that consist of "actions" represented by verbs in natural languages and "participants" who perform the actions. These objects are connected by arrows (morphisms) that link each action to its participant and link cause to effect. Operations based on category theory enable comparisons between episodes and deductive inferences, including abstractions of stories. One of the goals of this study is to develop a database-driven artificial intelligence. This artificial intelligence thinks like a human but possesses the accuracy and rigour of a machine. The vast capacities of databases (up to petabyte scales in current technologies) enable the artificial intelligence to store a greater volume of knowledge than neural-network based artificial intelligences. Cognitive-logs serve as a model of human cognition and designed with references to cognitive linguistics. Cognitive-logs also have the potential to model various human mind activities.

2024-09-06
🤖 Decentralized Learning in General-sum Markov Games
The Markov game framework is widely used to model interactions among agents with heterogeneous utilities in dynamic, uncertain, societal-scale systems. In these settings, agents typically operate in a decentralized manner due to privacy and scalability concerns, often without knowledge of others' strategies. Designing decentralized learning algorithms that provably converge to rational outcomes remains challenging, especially beyond Markov zero-sum and potential games, which do not fully capture the mixed cooperative-competitive nature of real-world interactions. Our paper focuses on designing decentralized learning algorithms for general-sum Markov games, aiming to provide guarantees of convergence to approximate Nash equilibria. We introduce a Markov Near-Potential Function (MNPF), and show that MNPF plays a central role in the analysis of convergence of an actor-critic-based decentralized learning dynamics to approximate Nash equilibria. Our analysis leverages the two-timescale nature of actor-critic algorithms, where Q-function updates occur faster than policy updates. This result is further strengthened under certain regularity conditions and when the set of Nash equilibria is finite. Our findings provide a new perspective on the analysis of decentralized learning in multi-agent systems, addressing the complexities of real-world interactions.

2024-09-05
🤖 WildVis: Open Source Visualizer for Million-Scale Chat Logs in the Wild
The increasing availability of real-world conversation data offers exciting opportunities for researchers to study user-chatbot interactions. However, the sheer volume of this data makes manually examining individual conversations impractical. To overcome this challenge, we introduce WildVis, an interactive tool that enables fast, versatile, and large-scale conversation analysis. WildVis provides search and visualization capabilities in the text and embedding spaces based on a list of criteria. To manage million-scale datasets, we implemented optimizations including search index construction, embedding precomputation and compression, and caching to ensure responsive user interactions within seconds. We demonstrate WildVis' utility through three case studies: facilitating chatbot misuse research, visualizing and comparing topic distributions across datasets, and characterizing user-specific conversation patterns. WildVis is open-source and designed to be extendable, supporting additional datasets and customized search and visualization functionalities.

2024-09-01
🤖 BUET Multi-disease Heart Sound Dataset: A Comprehensive Auscultation Dataset for Developing Computer-Aided Diagnostic Systems
Cardiac auscultation, an integral tool in diagnosing cardiovascular diseases (CVDs), often relies on the subjective interpretation of clinicians, presenting a limitation in consistency and accuracy. Addressing this, we introduce the BUET Multi-disease Heart Sound (BMD-HS) dataset - a comprehensive and meticulously curated collection of heart sound recordings. This dataset, encompassing 864 recordings across five distinct classes of common heart sounds, represents a broad spectrum of valvular heart diseases, with a focus on diagnostically challenging cases. The standout feature of the BMD-HS dataset is its innovative multi-label annotation system, which captures a diverse range of diseases and unique disease states. This system significantly enhances the dataset's utility for developing advanced machine learning models in automated heart sound classification and diagnosis. By bridging the gap between traditional auscultation practices and contemporary data-driven diagnostic methods, the BMD-HS dataset is poised to revolutionize CVD diagnosis and management, providing an invaluable resource for the advancement of cardiac health research. The dataset is publicly available at this link: https://github.com/mHealthBuet/BMD-HS-Dataset.

2024-09-01
🤖 Sample-Efficient Diffusion for Text-To-Speech Synthesis
This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm for effective speech synthesis in modest data regimes through latent diffusion. It is based on a novel diffusion architecture, that we call U-Audio Transformer (U-AT), that efficiently scales to long sequences and operates in the latent space of a pre-trained audio autoencoder. Conditioned on character-aware language model representations, SESD achieves impressive results despite training on less than 1k hours of speech - far less than current state-of-the-art systems. In fact, it synthesizes more intelligible speech than the state-of-the-art auto-regressive model, VALL-E, while using less than 2% the training data.

2024-08-30
🤖 OnlySportsLM: Optimizing Sports-Domain Language Models with SOTA Performance under Billion Parameters
This paper explores the potential of a small, domain-specific language model trained exclusively on sports-related data. We investigate whether extensive training data with specially designed small model structures can overcome model size constraints. The study introduces the OnlySports collection, comprising OnlySportsLM, OnlySports Dataset, and OnlySports Benchmark. Our approach involves: 1) creating a massive 600 billion tokens OnlySports Dataset from FineWeb, 2) optimizing the RWKV architecture for sports-related tasks, resulting in a 196M parameters model with 20-layer, 640-dimension structure, 3) training the OnlySportsLM on part of OnlySports Dataset, and 4) testing the resultant model on OnlySports Benchmark. OnlySportsLM achieves a 37.62%/34.08% accuracy improvement over previous 135M/360M state-of-the-art models and matches the performance of larger models such as SomlLM 1.7B and Qwen 1.5B in the sports domain. Additionally, the OnlySports collection presents a comprehensive workflow for building high-quality, domain-specific language models, providing a replicable blueprint for efficient AI development across various specialized fields.

2024-08-29
🤖 LLMs generate structurally realistic social networks but overestimate political homophily
Generating social networks is essential for many applications, such as epidemic modeling and social simulations. Prior approaches either involve deep learning models, which require many observed networks for training, or stylized models, which are limited in their realism and flexibility. In contrast, LLMs offer the potential for zero-shot and flexible network generation. However, two key questions are: (1) are LLM's generated networks realistic, and (2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, community structure, and degree. However, we find that LLMs emphasize political homophily over all other types of homophily and overestimate political homophily relative to real-world measures.

2024-08-28
🤖 CoGen: Learning from Feedback with Coupled Comprehension and Generation
Systems with both language comprehension and generation capabilities can benefit from the tight connection between the two. This work studies coupling comprehension and generation with focus on continually learning from interaction with users. We propose techniques to tightly integrate the two capabilities for both learning and inference. We situate our studies in two-player reference games, and deploy various models for thousands of interactions with human users, while learning from interaction feedback signals. We show dramatic improvements in performance over time, with comprehension-generation coupling leading to performance improvements up to 26% in absolute terms and up to 17% higher accuracies compared to a non-coupled system. Our analysis also shows coupling has substantial qualitative impact on the system's language, making it significantly more human-like.

2024-08-28
🤖 Structural Optimization of Lightweight Bipedal Robot via SERL
Designing a bipedal robot is a complex and challenging task, especially when dealing with a multitude of structural parameters. Traditional design methods often rely on human intuition and experience. However, such approaches are time-consuming, labor-intensive, lack theoretical guidance and hard to obtain optimal design results within vast design spaces, thus failing to full exploit the inherent performance potential of robots. In this context, this paper introduces the SERL (Structure Evolution Reinforcement Learning) algorithm, which combines reinforcement learning for locomotion tasks with evolution algorithms. The aim is to identify the optimal parameter combinations within a given multidimensional design space. Through the SERL algorithm, we successfully designed a bipedal robot named Wow Orin, where the optimal leg length are obtained through optimization based on body structure and motor torque. We have experimentally validated the effectiveness of the SERL algorithm, which is capable of optimizing the best structure within specified design space and task conditions. Additionally, to assess the performance gap between our designed robot and the current state-of-the-art robots, we compared Wow Orin with mainstream bipedal robots Cassie and Unitree H1. A series of experimental results demonstrate the Outstanding energy efficiency and performance of Wow Orin, further validating the feasibility of applying the SERL algorithm to practical design.

2024-08-28
🤖 Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models
The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.

2024-08-27
🤖 The Mamba in the Llama: Distilling and Accelerating Hybrid Models
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best instruction-tuned linear RNN model.

2024-08-24
🤖 Artificial intelligence for science: The easy and hard problems
A suite of impressive scientific discoveries have been driven by recent advances in artificial intelligence. These almost all result from training flexible algorithms to solve difficult optimization problems specified in advance by teams of domain scientists and engineers with access to large amounts of data. Although extremely useful, this kind of problem solving only corresponds to one part of science - the "easy problem." The other part of scientific research is coming up with the problem itself - the "hard problem." Solving the hard problem is beyond the capacities of current algorithms for scientific discovery because it requires continual conceptual revision based on poorly defined constraints. We can make progress on understanding how humans solve the hard problem by studying the cognitive science of scientists, and then use the results to design new computational agents that automatically infer and update their scientific paradigms.

2024-08-23
🤖 Frequency-aware Feature Fusion for Dense Image Prediction
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.

2024-08-22
🤖 Cell-ontology guided transcriptome foundation model
Transcriptome foundation models TFMs hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present \textbf{s}ingle \textbf{c}ell, \textbf{Cell}-\textbf{o}ntology guided TFM scCello. We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses.

2024-08-21
🤖 Automating Thought of Search: A Journey Towards Soundness and Completeness
Planning remains one of the last standing bastions for large language models (LLMs), which now turn their attention to search. Most of the literature uses the language models as world models to define the search space, forgoing soundness for the sake of flexibility. A recent work, Thought of Search (ToS), proposed defining the search space with code, having the language models produce that code. ToS requires a human in the loop, collaboratively producing a sound successor function and goal test. The result, however, is worth the effort: all the tested datasets were solved with 100% accuracy. At the same time LLMs have demonstrated significant progress in code generation and refinement for complex reasoning tasks. In this work, we automate ToS (AutoToS), completely taking the human out of the loop of solving planning problems. AutoToS guides the language model step by step towards the generation of sound and complete search components, through feedback from both generic and domain specific unit tests. We achieve 100% accuracy, with minimal feedback iterations, using LLMs of various sizes on all evaluated domains.

2024-08-21
🤖 Great Memory, Shallow Reasoning: Limits of $k$NN-LMs
$K$-nearest neighbor language models ($k$NN-LMs), which integrate retrieval with next-word prediction, have demonstrated strong performance in language modeling as well as downstream NLP benchmarks. These results have led researchers to argue that models trained on poor quality or outdated data could perform well by employing a $k$NN extension that has access to a higher-quality datastore. In this work, we ask whether this improved ability to recall information really translates into downstream abilities. We extensively evaluate $k$NN-LMs on a diverse set of tasks, ranging from sentiment classification and commonsense reasoning to multi-hop reasoning. Results show that $k$NN-LMs excel at memory-intensive tasks, where utilizing the patterns in the input is sufficient for determining the output, but struggle with reasoning tasks that require integrating multiple pieces of information to derive new knowledge. We further demonstrate through oracle experiments and qualitative analysis that even with perfect retrieval, $k$NN-LMs still fail to determine the correct answers, placing an upper bound on their reasoning performance. Code and datastores are released at https://github.com/GSYfate/knnlm-limits/.

2024-08-20
🤖 Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks
The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.

2024-08-20
🤖 Effective Off-Policy Evaluation and Learning in Contextual Combinatorial Bandits
We explore off-policy evaluation and learning (OPE/L) in contextual combinatorial bandits (CCB), where a policy selects a subset in the action space. For example, it might choose a set of furniture pieces (a bed and a drawer) from available items (bed, drawer, chair, etc.) for interior design sales. This setting is widespread in fields such as recommender systems and healthcare, yet OPE/L of CCB remains unexplored in the relevant literature. Typical OPE/L methods such as regression and importance sampling can be applied to the CCB problem, however, they face significant challenges due to high bias or variance, exacerbated by the exponential growth in the number of available subsets. To address these challenges, we introduce a concept of factored action space, which allows us to decompose each subset into binary indicators. This formulation allows us to distinguish between the ''main effect'' derived from the main actions, and the ''residual effect'', originating from the supplemental actions, facilitating more effective OPE. Specifically, our estimator, called OPCB, leverages an importance sampling-based approach to unbiasedly estimate the main effect, while employing regression-based approach to deal with the residual effect with low variance. OPCB achieves substantial variance reduction compared to conventional importance sampling methods and bias reduction relative to regression methods under certain conditions, as illustrated in our theoretical analysis. Experiments demonstrate OPCB's superior performance over typical methods in both OPE and OPL.

2024-08-17
🤖 Towards Effective Top-N Hamming Search via Bipartite Graph Contrastive Hashing
Searching on bipartite graphs serves as a fundamental task for various real-world applications, such as recommendation systems, database retrieval, and document querying. Conventional approaches rely on similarity matching in continuous Euclidean space of vectorized node embeddings. To handle intensive similarity computation efficiently, hashing techniques for graph-structured data have emerged as a prominent research direction. However, despite the retrieval efficiency in Hamming space, previous studies have encountered catastrophic performance decay. To address this challenge, we investigate the problem of hashing with Graph Convolutional Network for effective Top-N search. Our findings indicate the learning effectiveness of incorporating hashing techniques within the exploration of bipartite graph reception fields, as opposed to simply treating hashing as post-processing to output embeddings. To further enhance the model performance, we advance upon these findings and propose Bipartite Graph Contrastive Hashing (BGCH+). BGCH+ introduces a novel dual augmentation approach to both intermediate information and hash code outputs in the latent feature spaces, thereby producing more expressive and robust hash codes within a dual self-supervised learning paradigm. Comprehensive empirical analyses on six real-world benchmarks validate the effectiveness of our dual feature contrastive learning in boosting the performance of BGCH+ compared to existing approaches.

2024-08-14
🤖 Development of a Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments
Emergency department (ED) overcrowding and the complexity of rapid decision-making in critical care settings pose significant challenges to healthcare systems worldwide. While clinical decision support systems (CDSS) have shown promise, the integration of large language models (LLMs) offers new possibilities for enhancing triage accuracy and clinical decision-making. This study presents an LLM-driven CDSS designed to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management. We developed a multi-agent CDSS utilizing Llama-3-70b as the base LLM, orchestrated by CrewAI and Langchain. The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator. It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management. The model was evaluated using the Asclepius dataset, with performance assessed by a clinical emergency medicine specialist. The CDSS demonstrated high accuracy in triage decision-making compared to the baseline of a single-agent system. Furthermore, the system exhibited strong performance in critical areas, including primary diagnosis, critical findings identification, disposition decision-making, treatment planning, and resource allocation. Our multi-agent CDSS demonstrates significant potential for supporting comprehensive emergency care management. By leveraging state-of-the-art AI technologies, this system offers a scalable and adaptable tool that could enhance emergency medical care delivery, potentially alleviating ED overcrowding and improving patient outcomes. This work contributes to the growing field of AI applications in emergency medicine and offers a promising direction for future research and clinical implementation.

2024-08-09
🤖 A Jailbroken GenAI Model Can Cause Substantial Harm: GenAI-powered Applications are Vulnerable to PromptWares
In this paper we argue that a jailbroken GenAI model can cause substantial harm to GenAI-powered applications and facilitate PromptWare, a new type of attack that flips the GenAI model's behavior from serving an application to attacking it. PromptWare exploits user inputs to jailbreak a GenAI model to force/perform malicious activity within the context of a GenAI-powered application. First, we introduce a naive implementation of PromptWare that behaves as malware that targets Plan & Execute architectures (a.k.a., ReAct, function calling). We show that attackers could force a desired execution flow by creating a user input that produces desired outputs given that the logic of the GenAI-powered application is known to attackers. We demonstrate the application of a DoS attack that triggers the execution of a GenAI-powered assistant to enter an infinite loop that wastes money and computational resources on redundant API calls to a GenAI engine, preventing the application from providing service to a user. Next, we introduce a more sophisticated implementation of PromptWare that we name Advanced PromptWare Threat (APwT) that targets GenAI-powered applications whose logic is unknown to attackers. We show that attackers could create user input that exploits the GenAI engine's advanced AI capabilities to launch a kill chain in inference time consisting of six steps intended to escalate privileges, analyze the application's context, identify valuable assets, reason possible malicious activities, decide on one of them, and execute it. We demonstrate the application of APwT against a GenAI-powered e-commerce chatbot and show that it can trigger the modification of SQL tables, potentially leading to unauthorized discounts on the items sold to the user.

2024-08-06
🤖 Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons
In this paper, we investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks. Through an analysis of LLMs' internal factual recall at each reasoning step via Knowledge Neurons, we reveal that LLMs fail to harness the critical factual associations under certain circumstances. Instead, they tend to opt for alternative, shortcut-like pathways to answer reasoning questions. By manually manipulating the recall process of parametric knowledge in LLMs, we demonstrate that enhancing this recall process directly improves reasoning performance whereas suppressing it leads to notable degradation. Furthermore, we assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks. Our findings indicate that CoT can intensify the recall of factual knowledge by encouraging LLMs to engage in orderly and reliable reasoning. Furthermore, we explored how contextual conflicts affect the retrieval of facts during the reasoning process to gain a comprehensive understanding of the factual recall behaviors of LLMs. Code and data will be available soon.

2024-08-04
🤖 Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Instruction tuning plays a critical role in aligning large language models (LLMs) with human preference. Despite the vast amount of open instruction datasets, naively training a LLM on all existing instructions may not be optimal and practical. To pinpoint the most beneficial datapoints, data assessment and selection methods have been proposed in the fields of natural language processing (NLP) and deep learning. However, under the context of instruction tuning, there still exists a gap in knowledge on what kind of data evaluation metrics can be employed and how they can be integrated into the selection mechanism. To bridge this gap, we present a comprehensive review on existing literature of data assessment and selection especially for instruction tuning of LLMs. We systematically categorize all applicable methods into quality-based, diversity-based, and importance-based ones where a unified, fine-grained taxonomy is structured. For each category, representative methods are elaborated to describe the landscape of relevant research. In addition, comparison between latest methods is conducted on their officially reported results to provide in-depth discussions on their limitations. Finally, we summarize the open challenges and propose the promosing avenues for future studies. All related contents are available at https://github.com/yuleiqin/fantastic-data-engineering.

2024-08-02
🤖 From Stem to Stern: Contestability Along AI Value Chains
This workshop will grow and consolidate a community of interdisciplinary CSCW researchers focusing on the topic of contestable AI. As an outcome of the workshop, we will synthesize the most pressing opportunities and challenges for contestability along AI value chains in the form of a research roadmap. This roadmap will help shape and inspire imminent work in this field. Considering the length and depth of AI value chains, it will especially spur discussions around the contestability of AI systems along various sites of such chains. The workshop will serve as a platform for dialogue and demonstrations of concrete, successful, and unsuccessful examples of AI systems that (could or should) have been contested, to identify requirements, obstacles, and opportunities for designing and deploying contestable AI in various contexts. This will be held primarily as an in-person workshop, with some hybrid accommodation. The day will consist of individual presentations and group activities to stimulate ideation and inspire broad reflections on the field of contestable AI. Our aim is to facilitate interdisciplinary dialogue by bringing together researchers, practitioners, and stakeholders to foster the design and deployment of contestable AI.

2024-08-02
🤖 TrIM: Triangular Input Movement Systolic Array for Convolutional Neural Networks -- Part I: Dataflow and Analytical Modelling
In order to follow the ever-growing computational complexity and data intensity of state-of-the-art AI models, new computing paradigms are being proposed. These paradigms aim at achieving high energy efficiency, by mitigating the Von Neumann bottleneck that relates to the energy cost of moving data between the processing cores and the memory. Convolutional Neural Networks (CNNs) are particularly susceptible to this bottleneck, given the massive data they have to manage. Systolic Arrays (SAs) are promising architectures to mitigate the data transmission cost, thanks to high data utilization carried out by an array of Processing Elements (PEs). These PEs continuously exchange and process data locally based on specific dataflows (like weight stationary and row stationary), in turn reducing the number of memory accesses to the main memory. The hardware specialization of SAs can meet different workloads, ranging from matrix multiplications to multi-dimensional convolutions. In this paper, we propose TrIM: a novel dataflow for SAs based on a Triangular Input Movement and compatible with CNN computing. When compared to state-of-the-art SA dataflows, like weight stationary and row stationary, the high data utilization offered by TrIM guarantees ~10x less memory access. Furthermore, considering that PEs continuously overlap multiplications and accumulations, TrIM achieves high throughput (up to 81.8% higher than row stationary), other than requiring a limited number of registers (up to 15.6x fewer registers than row stationary).

2024-08-02
🤖 Talk Less, Interact Better: Evaluating In-context Conversational Adaptation in Multimodal LLMs
Humans spontaneously use increasingly efficient language as interactions progress, by adapting and forming ad-hoc conventions. This phenomenon has been studied extensively using reference games, showing properties of human language that go beyond relaying intents. It remains unexplored whether multimodal large language models (MLLMs) similarly increase communication efficiency during interactions, and what mechanisms they may adopt for this purpose. We introduce ICCA, an automated framework to evaluate such conversational adaptation as an in-context behavior in MLLMs. We evaluate several state-of-the-art MLLMs, and observe that while they may understand the increasingly efficient language of their interlocutor, they do not spontaneously make their own language more efficient over time. This latter ability can only be elicited in some models (e.g., GPT-4) with heavy-handed prompting. This shows that this property of linguistic interaction does not arise from current training regimes, even though it is a common hallmark of human language. ICCA is available at https://github.com/lil-lab/ICCA.

2024-07-31
🤖 Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of AD, ND, OSR, OOD detection, and OD in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. In addition, we also highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection, including the discussion over other related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude this survey with open challenges and future directions.

2024-07-24
🤖 I Could've Asked That: Reformulating Unanswerable Questions
When seeking information from unfamiliar documents, users frequently pose questions that cannot be answered by the documents. While existing large language models (LLMs) identify these unanswerable questions, they do not assist users in reformulating their questions, thereby reducing their overall utility. We curate CouldAsk, an evaluation benchmark composed of existing and new datasets for document-grounded question answering, specifically designed to study reformulating unanswerable questions. We evaluate state-of-the-art open-source and proprietary LLMs on CouldAsk. The results demonstrate the limited capabilities of these models in reformulating questions. Specifically, GPT-4 and Llama2-7B successfully reformulate questions only 26% and 12% of the time, respectively. Error analysis shows that 62% of the unsuccessful reformulations stem from the models merely rephrasing the questions or even generating identical questions. We publicly release the benchmark and the code to reproduce the experiments.

2024-07-24
🤖 WildHallucinations: Evaluating Long-form Factuality in LLMs with Real-World Entity Queries
While hallucinations of large language models (LLMs) prevail as a major challenge, existing evaluation benchmarks on factuality do not cover the diverse domains of knowledge that the real-world users of LLMs seek information about. To bridge this gap, we introduce WildHallucinations, a benchmark that evaluates factuality. It does so by prompting LLMs to generate information about entities mined from user-chatbot conversations in the wild. These generations are then automatically fact-checked against a systematically curated knowledge source collected from web search. Notably, half of these real-world entities do not have associated Wikipedia pages. We evaluate 118,785 generations from 15 LLMs on 7,919 entities. We find that LLMs consistently hallucinate more on entities without Wikipedia pages and exhibit varying hallucination rates across different domains. Finally, given the same base models, adding a retrieval component only slightly reduces hallucinations but does not eliminate hallucinations.

2024-07-18
🤖 Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization
Language model alignment methods, such as reinforcement learning from human feedback (RLHF), have led to impressive advances in language model capabilities, but existing techniques are limited by a widely observed phenomenon known as overoptimization, where the quality of the language model plateaus or degrades over the course of the alignment process. Overoptimization is often attributed to overfitting to an inaccurate reward model, and while it can be mitigated through online data collection, this is infeasible in many settings. This raises a fundamental question: Do existing offline alignment algorithms make the most of the data they have, or can their sample-efficiency be improved further? We address this question with a new algorithm for offline alignment, $\chi^2$-Preference Optimization ($\chi$PO). $\chi$PO is a one-line change to Direct Preference Optimization (DPO; Rafailov et al., 2023), which only involves modifying the logarithmic link function in the DPO objective. Despite this minimal change, $\chi$PO implicitly implements the principle of pessimism in the face of uncertainty via regularization with the $\chi^2$-divergence -- which quantifies uncertainty more effectively than KL-regularization -- and provably alleviates overoptimization, achieving sample-complexity guarantees based on single-policy concentrability -- the gold standard in offline reinforcement learning. $\chi$PO's simplicity and strong guarantees make it the first practical and general-purpose offline alignment algorithm that is provably robust to overoptimization.

2024-07-12
🤖 Soft Prompts Go Hard: Steering Visual Language Models with Hidden Meta-Instructions
We introduce a new type of indirect injection vulnerabilities in language models that operate on images: hidden "meta-instructions" that influence how the model interprets the image and steer the model's outputs to express an adversary-chosen style, sentiment, or point of view. We explain how to create meta-instructions by generating images that act as soft prompts. Unlike jailbreaking attacks and adversarial examples, the outputs resulting from these images are plausible and based on the visual content of the image, yet follow the adversary's (meta-)instructions. We describe the risks of these attacks, including misinformation and spin, evaluate their efficacy for multiple visual language models and adversarial meta-objectives, and demonstrate how they can "unlock" the capabilities of the underlying language models that are unavailable via explicit text instructions. Finally, we discuss defenses against these attacks.

2024-07-10
🤖 MemWarp: Discontinuity-Preserving Cardiac Registration with Memorized Anatomical Filters
Many existing learning-based deformable image registration methods impose constraints on deformation fields to ensure they are globally smooth and continuous. However, this assumption does not hold in cardiac image registration, where different anatomical regions exhibit asymmetric motions during respiration and movements due to sliding organs within the chest. Consequently, such global constraints fail to accommodate local discontinuities across organ boundaries, potentially resulting in erroneous and unrealistic displacement fields. In this paper, we address this issue with MemWarp, a learning framework that leverages a memory network to store prototypical information tailored to different anatomical regions. MemWarp is different from earlier approaches in two main aspects: firstly, by decoupling feature extraction from similarity matching in moving and fixed images, it facilitates more effective utilization of feature maps; secondly, despite its capability to preserve discontinuities, it eliminates the need for segmentation masks during model inference. In experiments on a publicly available cardiac dataset, our method achieves considerable improvements in registration accuracy and producing realistic deformations, outperforming state-of-the-art methods with a remarkable 7.1\% Dice score improvement over the runner-up semi-supervised method. Source code will be available at https://github.com/tinymilky/Mem-Warp.

2024-07-10
🤖 FLAIR: Feeding via Long-horizon AcquIsition of Realistic dishes
Robot-assisted feeding has the potential to improve the quality of life for individuals with mobility limitations who are unable to feed themselves independently. However, there exists a large gap between the homogeneous, curated plates existing feeding systems can handle, and truly in-the-wild meals. Feeding realistic plates is immensely challenging due to the sheer range of food items that a robot may encounter, each requiring specialized manipulation strategies which must be sequenced over a long horizon to feed an entire meal. An assistive feeding system should not only be able to sequence different strategies efficiently in order to feed an entire meal, but also be mindful of user preferences given the personalized nature of the task. We address this with FLAIR, a system for long-horizon feeding which leverages the commonsense and few-shot reasoning capabilities of foundation models, along with a library of parameterized skills, to plan and execute user-preferred and efficient bite sequences. In real-world evaluations across 6 realistic plates, we find that FLAIR can effectively tap into a varied library of skills for efficient food pickup, while adhering to the diverse preferences of 42 participants without mobility limitations as evaluated in a user study. We demonstrate the seamless integration of FLAIR with existing bite transfer methods [19, 28], and deploy it across 2 institutions and 3 robots, illustrating its adaptability. Finally, we illustrate the real-world efficacy of our system by successfully feeding a care recipient with severe mobility limitations. Supplementary materials and videos can be found at: https://emprise.cs.cornell.edu/flair .

2024-07-10
🤖 The Human Factor in AI Red Teaming: Perspectives from Social and Collaborative Computing
Rapid progress in general-purpose AI has sparked significant interest in "red teaming," a practice of adversarial testing originating in military and cybersecurity applications. AI red teaming raises many questions about the human factor, such as how red teamers are selected, biases and blindspots in how tests are conducted, and harmful content's psychological effects on red teamers. A growing body of HCI and CSCW literature examines related practices-including data labeling, content moderation, and algorithmic auditing. However, few, if any, have investigated red teaming itself. This workshop seeks to consider the conceptual and empirical challenges associated with this practice, often rendered opaque by non-disclosure agreements. Future studies may explore topics ranging from fairness to mental health and other areas of potential harm. We aim to facilitate a community of researchers and practitioners who can begin to meet these challenges with creativity, innovation, and thoughtful reflection.

2024-07-08
🤖 Can Machines Learn the True Probabilities?
When there exists uncertainty, AI machines are designed to make decisions so as to reach the best expected outcomes. Expectations are based on true facts about the objective environment the machines interact with, and those facts can be encoded into AI models in the form of true objective probability functions. Accordingly, AI models involve probabilistic machine learning in which the probabilities should be objectively interpreted. We prove under some basic assumptions when machines can learn the true objective probabilities, if any, and when machines cannot learn them.

2024-07-08
🤖 AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships
Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity of labeled data, generalization across different domains, and disentangling causation from correlation. In light of recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict causal genotype-environment-phenotype relationships under various conditions. AI models inspired by biology may identify novel molecular targets, biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.

2024-07-08
🤖 On Speeding Up Language Model Evaluation
Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.

2024-07-04
🤖 Orchestrating LLMs with Different Personalizations
This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences, sometimes referred to as Reinforcement Learning from \textit{Personalized} Human Feedback (RLPHF). Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification. Starting from specialized expert LLMs, each trained for one such particular preference dimension, we propose a black-box method that merges their outputs on a per-token level. We train a lightweight Preference Control Model (PCM) that dynamically translates the preference description and current context into next-token prediction weights. By combining the expert models' outputs at the token level, our approach dynamically generates text that optimizes the given preference. Empirical tests show that our method matches or surpasses existing preference merging techniques, providing a scalable, efficient alternative to fine-tuning LLMs for individual personalization.

2024-06-28
🤖 ProgressGym: Alignment with a Millennium of Moral Progress
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.

2024-06-24
🤖 $\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning
Alphas are pivotal in providing signals for quantitative trading. The industry highly values the discovery of formulaic alphas for their interpretability and ease of analysis, compared with the expressive yet overfitting-prone black-box alphas. In this work, we focus on discovering formulaic alphas. Prior studies on automatically generating a collection of formulaic alphas were mostly based on genetic programming (GP), which is known to suffer from the problems of being sensitive to the initial population, converting to local optima, and slow computation speed. Recent efforts employing deep reinforcement learning (DRL) for alpha discovery have not fully addressed key practical considerations such as alpha correlations and validity, which are crucial for their effectiveness. In this work, we propose a novel framework for alpha discovery using DRL by formulating the alpha discovery process as program construction. Our agent, $\text{Alpha}^2$, assembles an alpha program optimized for an evaluation metric. A search algorithm guided by DRL navigates through the search space based on value estimates for potential alpha outcomes. The evaluation metric encourages both the performance and the diversity of alphas for a better final trading strategy. Our formulation of searching alphas also brings the advantage of pre-calculation dimensional analysis, ensuring the logical soundness of alphas, and pruning the vast search space to a large extent. Empirical experiments on real-world stock markets demonstrates $\text{Alpha}^2$'s capability to identify a diverse set of logical and effective alphas, which significantly improves the performance of the final trading strategy. The code of our method is available at https://github.com/x35f/alpha2.

2024-06-24
🤖 ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models
The high power consumption and latency-sensitive deployments of large language models (LLMs) have motivated techniques like quantization and sparsity. Contextual sparsity, where the sparsity pattern is input-dependent, is crucial in LLMs because the permanent removal of attention heads or neurons from LLMs can significantly degrade accuracy. Prior work has attempted to model contextual sparsity using neural networks trained to predict activation magnitudes, which can be used to dynamically prune structures with low predicted activation magnitude. In this paper, we look beyond magnitude-based pruning criteria to assess attention head and neuron importance in LLMs. We developed a novel predictor called ShadowLLM, which can shadow the LLM behavior and enforce better sparsity patterns, resulting in over 15% improvement in end-to-end accuracy without increasing latency compared to previous methods. ShadowLLM achieves up to a 20\% speed-up over the state-of-the-art DejaVu framework. These enhancements are validated on models with up to 30 billion parameters. Our code is available at \href{https://github.com/abdelfattah-lab/shadow_llm/}{ShadowLLM}.

2024-06-23
🤖 Efficient Evolutionary Search Over Chemical Space with Large Language Models
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO

2024-06-21
🤖 Injecting Bias in Text-To-Image Models via Composite-Trigger Backdoors
Recent advances in large text-conditional image generative models such as Stable Diffusion, Midjourney, and DALL-E 3 have revolutionized the field of image generation, allowing users to produce high-quality, realistic images from textual prompts. While these developments have enhanced artistic creation and visual communication, they also present an underexplored attack opportunity: the possibility of inducing biases by an adversary into the generated images for malicious intentions, e.g., to influence society and spread propaganda. In this paper, we demonstrate the possibility of such a bias injection threat by an adversary who backdoors such models with a small number of malicious data samples; the implemented backdoor is activated when special triggers exist in the input prompt of the backdoored models. On the other hand, the model's utility is preserved in the absence of the triggers, making the attack highly undetectable. We present a novel framework that enables efficient generation of poisoning samples with composite (multi-word) triggers for such an attack. Our extensive experiments using over 1 million generated images and against hundreds of fine-tuned models demonstrate the feasibility of the presented backdoor attack. We illustrate how these biases can bypass conventional detection mechanisms, highlighting the challenges in proving the existence of biases within operational constraints. Our cost analysis confirms the low financial barrier to executing such attacks, underscoring the need for robust defensive strategies against such vulnerabilities in text-to-image generation models.

2024-06-19
🤖 Leveraging Large Language Models for Patient Engagement: The Power of Conversational AI in Digital Health
The rapid advancements in large language models (LLMs) have opened up new opportunities for transforming patient engagement in healthcare through conversational AI. This paper presents an overview of the current landscape of LLMs in healthcare, specifically focusing on their applications in analyzing and generating conversations for improved patient engagement. We showcase the power of LLMs in handling unstructured conversational data through four case studies: (1) analyzing mental health discussions on Reddit, (2) developing a personalized chatbot for cognitive engagement in seniors, (3) summarizing medical conversation datasets, and (4) designing an AI-powered patient engagement system. These case studies demonstrate how LLMs can effectively extract insights and summarizations from unstructured dialogues and engage patients in guided, goal-oriented conversations. Leveraging LLMs for conversational analysis and generation opens new doors for many patient-centered outcomes research opportunities. However, integrating LLMs into healthcare raises important ethical considerations regarding data privacy, bias, transparency, and regulatory compliance. We discuss best practices and guidelines for the responsible development and deployment of LLMs in healthcare settings. Realizing the full potential of LLMs in digital health will require close collaboration between the AI and healthcare professionals communities to address technical challenges and ensure these powerful tools' safety, efficacy, and equity.

2024-06-18
🤖 Time Series Modeling for Heart Rate Prediction: From ARIMA to Transformers
Cardiovascular disease (CVD) is a leading cause of death globally, necessitating precise forecasting models for monitoring vital signs like heart rate, blood pressure, and ECG. Traditional models, such as ARIMA and Prophet, are limited by their need for manual parameter tuning and challenges in handling noisy, sparse, and highly variable medical data. This study investigates advanced deep learning models, including LSTM, and transformer-based architectures, for predicting heart rate time series from the MIT-BIH Database. Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics, capturing complex patterns and dependencies more effectively. This research underscores the potential of deep learning to enhance patient monitoring and CVD management, suggesting substantial clinical benefits. Future work should extend these findings to larger, more diverse datasets and real-world clinical applications to further validate and optimize model performance.

2024-06-17
🤖 Online Pareto-Optimal Decision-Making for Complex Tasks using Active Inference
When a robot autonomously performs a complex task, it frequently must balance competing objectives while maintaining safety. This becomes more difficult in uncertain environments with stochastic outcomes. Enhancing transparency in the robot's behavior and aligning with user preferences are also crucial. This paper introduces a novel framework for multi-objective reinforcement learning that ensures safe task execution, optimizes trade-offs between objectives, and adheres to user preferences. The framework has two main layers: a multi-objective task planner and a high-level selector. The planning layer generates a set of optimal trade-off plans that guarantee satisfaction of a temporal logic task. The selector uses active inference to decide which generated plan best complies with user preferences and aids learning. Operating iteratively, the framework updates a parameterized learning model based on collected data. Case studies and benchmarks on both manipulation and mobile robots show that our framework outperforms other methods and (i) learns multiple optimal trade-offs, (ii) adheres to a user preference, and (iii) allows the user to adjust the balance between (i) and (ii).

2024-06-13
🤖 Scene Graph Generation in Large-Size VHR Satellite Imagery: A Large-Scale Dataset and A Context-Aware Approach
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets <subject, relationship, object> in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.

2024-06-12
🤖 Is Programming by Example solved by LLMs?
Programming-by-Examples (PBE) aims to generate an algorithm from input-output examples. Such systems are practically and theoretically important: from an end-user perspective, they are deployed to millions of people, and from an AI perspective, PBE corresponds to a very general form of few-shot inductive inference. Given the success of Large Language Models (LLMs) in code-generation tasks, we investigate here the extent to which LLMs can be said to have `solved' PBE. We experiment on classic domains such as lists and strings, and an uncommon graphics programming domain not well represented in typical pretraining data. We find that pretrained models are not effective at PBE, but that they can be fine-tuned for much higher performance, provided the test problems are in-distribution. We analyze empirically what causes these models to succeed and fail, and take steps toward understanding how to achieve better out-of-distribution generalization. Collectively these results suggest that LLMs make strong progress toward solving the typical suite of PBE tasks, potentially increasing the flexibility and applicability of PBE systems, while also identifying ways in which LLMs still fall short.

2024-06-11
🤖 Neural Gaffer: Relighting Any Object via Diffusion
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as relighting a radiance field.

2024-06-11
🤖 Comment on paper: Position: Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems
We identify two major issues in the SoftDist paper (Xia et al.): (1) the failure to run all steps of different baselines on the same hardware environment, and (2) the use of inconsistent time measurements when comparing to other baselines. These issues lead to flawed conclusions. When all steps are executed in the same hardware environment, the primary claim made in SoftDist is no longer supported.

2024-06-11
🤖 Simple and Effective Masked Diffusion Language Models
While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We release our code at: https://github.com/kuleshov-group/mdlm

2024-06-10
🤖 Aligning Large Language Models with Representation Editing: A Control Perspective
Aligning large language models (LLMs) with human objectives is crucial for real-world applications. However, fine-tuning LLMs for alignment often suffers from unstable training and requires substantial computing resources. Test-time alignment techniques, such as prompting and guided decoding, do not modify the underlying model, and their performance remains dependent on the original model's capabilities. To address these challenges, we propose aligning LLMs through representation editing. The core of our method is to view a pre-trained autoregressive LLM as a discrete-time stochastic dynamical system. To achieve alignment for specific objectives, we introduce external control signals into the state space of this language dynamical system. We train a value function directly on the hidden states according to the Bellman equation, enabling gradient-based optimization to obtain the optimal control signals at test time. Our experiments demonstrate that our method outperforms existing test-time alignment techniques while requiring significantly fewer resources compared to fine-tuning methods.

2024-06-06
🤖 Evaluating the World Model Implicit in a Generative Model
Recent work suggests that large language models may implicitly learn world models. How should we assess this possibility? We formalize this question for the case where the underlying reality is governed by a deterministic finite automaton. This includes problems as diverse as simple logical reasoning, geographic navigation, game-playing, and chemistry. We propose new evaluation metrics for world model recovery inspired by the classic Myhill-Nerode theorem from language theory. We illustrate their utility in three domains: game playing, logic puzzles, and navigation. In all domains, the generative models we consider do well on existing diagnostics for assessing world models, but our evaluation metrics reveal their world models to be far less coherent than they appear. Such incoherence creates fragility: using a generative model to solve related but subtly different tasks can lead it to fail badly. Building generative models that meaningfully capture the underlying logic of the domains they model would be immensely valuable; our results suggest new ways to assess how close a given model is to that goal.

2024-06-06
🤖 Differentiable Combinatorial Scheduling at Scale
This paper addresses the complex issue of resource-constrained scheduling, an NP-hard problem that spans critical areas including chip design and high-performance computing. Traditional scheduling methods often stumble over scalability and applicability challenges. We propose a novel approach using a differentiable combinatorial scheduling framework, utilizing Gumbel-Softmax differentiable sampling technique. This new technical allows for a fully differentiable formulation of linear programming (LP) based scheduling, extending its application to a broader range of LP formulations. To encode inequality constraints for scheduling tasks, we introduce \textit{constrained Gumbel Trick}, which adeptly encodes arbitrary inequality constraints. Consequently, our method facilitates an efficient and scalable scheduling via gradient descent without the need for training data. Comparative evaluations on both synthetic and real-world benchmarks highlight our capability to significantly improve the optimization efficiency of scheduling, surpassing state-of-the-art solutions offered by commercial and open-source solvers such as CPLEX, Gurobi, and CP-SAT in the majority of the designs.

2024-06-06
🤖 Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.

2024-06-05
🤖 The Good, the Bad, and the Hulk-like GPT: Analyzing Emotional Decisions of Large Language Models in Cooperation and Bargaining Games
Behavior study experiments are an important part of society modeling and understanding human interactions. In practice, many behavioral experiments encounter challenges related to internal and external validity, reproducibility, and social bias due to the complexity of social interactions and cooperation in human user studies. Recent advances in Large Language Models (LLMs) have provided researchers with a new promising tool for the simulation of human behavior. However, existing LLM-based simulations operate under the unproven hypothesis that LLM agents behave similarly to humans as well as ignore a crucial factor in human decision-making: emotions. In this paper, we introduce a novel methodology and the framework to study both, the decision-making of LLMs and their alignment with human behavior under emotional states. Experiments with GPT-3.5 and GPT-4 on four games from two different classes of behavioral game theory showed that emotions profoundly impact the performance of LLMs, leading to the development of more optimal strategies. While there is a strong alignment between the behavioral responses of GPT-3.5 and human participants, particularly evident in bargaining games, GPT-4 exhibits consistent behavior, ignoring induced emotions for rationality decisions. Surprisingly, emotional prompting, particularly with `anger' emotion, can disrupt the "superhuman" alignment of GPT-4, resembling human emotional responses.

2024-06-05
🤖 Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity
Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large Language Models using only forward passes. However, the application of ZO fine-tuning in memory-constrained settings such as mobile phones and laptops is still challenging since full precision forward passes are infeasible. In this study, we address this limitation by integrating sparsity and quantization into ZO fine-tuning of LLMs. Specifically, we investigate the feasibility of fine-tuning an extremely small subset of LLM parameters using ZO. This approach allows the majority of un-tuned parameters to be quantized to accommodate the constraint of limited device memory. Our findings reveal that the pre-training process can identify a set of "sensitive parameters" that can guide the ZO fine-tuning of LLMs on downstream tasks. Our results demonstrate that fine-tuning 0.1% sensitive parameters in the LLM with ZO can outperform the full ZO fine-tuning performance, while offering wall-clock time speedup. Additionally, we show that ZO fine-tuning targeting these 0.1% sensitive parameters, combined with 4 bit quantization, enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device with less than 8 GiB of memory and notably reduced latency.

2024-06-04
🤖 CADE: Cosine Annealing Differential Evolution for Spiking Neural Network
Spiking neural networks (SNNs) have gained prominence for their potential in neuromorphic computing and energy-efficient artificial intelligence, yet optimizing them remains a formidable challenge for gradient-based methods due to their discrete, spike-based computation. This paper attempts to tackle the challenges by introducing Cosine Annealing Differential Evolution (CADE), designed to modulate the mutation factor (F) and crossover rate (CR) of differential evolution (DE) for the SNN model, i.e., Spiking Element Wise (SEW) ResNet. Extensive empirical evaluations were conducted to analyze CADE. CADE showed a balance in exploring and exploiting the search space, resulting in accelerated convergence and improved accuracy compared to existing gradient-based and DE-based methods. Moreover, an initialization method based on a transfer learning setting was developed, pretraining on a source dataset (i.e., CIFAR-10) and fine-tuning the target dataset (i.e., CIFAR-100), to improve population diversity. It was found to further enhance CADE for SNN. Remarkably, CADE elevates the performance of the highest accuracy SEW model by an additional 0.52 percentage points, underscoring its effectiveness in fine-tuning and enhancing SNNs. These findings emphasize the pivotal role of a scheduler for F and CR adjustment, especially for DE-based SNN. Source Code on Github: https://github.com/Tank-Jiang/CADE4SNN.

2024-06-03
🤖 MEDIQ: Question-Asking LLMs for Adaptive and Reliable Clinical Reasoning
In high-stakes domains like clinical reasoning, AI assistants powered by large language models (LLMs) are yet to be reliable and safe. We identify a key obstacle towards reliability: existing LLMs are trained to answer any question, even with incomplete context in the prompt or insufficient parametric knowledge. We propose to change this paradigm to develop more careful LLMs that ask follow-up questions to gather necessary and sufficient information and respond reliably. We introduce MEDIQ, a framework to simulate realistic clinical interactions, which incorporates a Patient System and an adaptive Expert System. The Patient may provide incomplete information in the beginning; the Expert refrains from making diagnostic decisions when unconfident, and instead elicits missing details from the Patient via follow-up questions. To evaluate MEDIQ, we convert MEDQA and CRAFT-MD -- medical benchmarks for diagnostic question answering -- into an interactive setup. We develop a reliable Patient system and prototype several Expert systems, first showing that directly prompting state-of-the-art LLMs to ask questions degrades the quality of clinical reasoning, indicating that adapting LLMs to interactive information-seeking settings is nontrivial. We then augment the Expert with a novel abstention module to better estimate model confidence and decide whether to ask more questions, thereby improving diagnostic accuracy by 20.3%; however, performance still lags compared to an (unrealistic in practice) upper bound when full information is given upfront. Further analyses reveal that interactive performance can be improved by filtering irrelevant contexts and reformatting conversations. Overall, our paper introduces a novel problem towards LLM reliability, a novel MEDIQ framework, and highlights important future directions to extend the information-seeking abilities of LLM assistants in critical domains.

2024-06-03
🤖 Learning from Streaming Data when Users Choose
In digital markets comprised of many competing services, each user chooses between multiple service providers according to their preferences, and the chosen service makes use of the user data to incrementally improve its model. The service providers' models influence which service the user will choose at the next time step, and the user's choice, in return, influences the model update, leading to a feedback loop. In this paper, we formalize the above dynamics and develop a simple and efficient decentralized algorithm to locally minimize the overall user loss. Theoretically, we show that our algorithm asymptotically converges to stationary points of of the overall loss almost surely. We also experimentally demonstrate the utility of our algorithm with real world data.

2024-06-03
🤖 Understanding Preference Fine-Tuning Through the Lens of Coverage
Learning from human preference data has emerged as the dominant paradigm for fine-tuning large language models (LLMs). The two most common families of techniques -- online reinforcement learning (RL) such as Proximal Policy Optimization (PPO) and offline contrastive methods such as Direct Preference Optimization (DPO) -- were positioned as equivalent in prior work due to the fact that both have to start from the same offline preference dataset. To further expand our theoretical understanding of the similarities and differences between online and offline techniques for preference fine-tuning, we conduct a rigorous analysis through the lens of dataset coverage, a concept that captures how the training data covers the test distribution and is widely used in RL. We prove that a global coverage condition is both necessary and sufficient for offline contrastive methods to converge to the optimal policy, but a weaker partial coverage condition suffices for online RL methods. This separation provides one explanation of why online RL methods can perform better than offline methods, especially when the offline preference data is not diverse enough. Finally, motivated by our preceding theoretical observations, we derive a hybrid preference optimization (HyPO) algorithm that uses offline data for contrastive-based preference optimization and online data for KL regularization. Theoretically and empirically, we demonstrate that HyPO is more performant than its pure offline counterpart DPO, while still preserving its computation and memory efficiency.

2024-06-02
🤖 Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common in a wide variety of applied settings to collect data of multiple different types on the same set of samples. Our particular focus in this article is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components. We ensure identifiability via a novel dependent cumulative shrinkage process (D-CUSP) prior. We provide an efficient implementation via a partially collapsed Gibbs sampler and extend our approach to allow flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (R package) is available at https://github.com/niccoloanceschi/jafar.

2024-05-31
🤖 How Random is Random? Evaluating the Randomness and Humaness of LLMs' Coin Flips
One uniquely human trait is our inability to be random. We see and produce patterns where there should not be any and we do so in a predictable way. LLMs are supplied with human data and prone to human biases. In this work, we explore how LLMs approach randomness and where and how they fail through the lens of the well studied phenomena of generating binary random sequences. We find that GPT 4 and Llama 3 exhibit and exacerbate nearly every human bias we test in this context, but GPT 3.5 exhibits more random behavior. This dichotomy of randomness or humaness is proposed as a fundamental question of LLMs and that either behavior may be useful in different circumstances.

2024-05-31
🤖 Reward Machines for Deep RL in Noisy and Uncertain Environments
Reward Machines provide an automata-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing complex reward function structure, they enable counterfactual learning updates that have resulted in impressive sample efficiency gains. While Reward Machines have been employed in both tabular and deep RL settings, they have typically relied on a ground-truth interpretation of the domain-specific vocabulary that form the building blocks of the reward function. Such ground-truth interpretations can be elusive in many real-world settings, due in part to partial observability or noisy sensing. In this paper, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that leverage task structure under uncertain interpretation of domain-specific vocabulary. Theoretical analysis exposes pitfalls in naive approaches to this problem, while experimental results show that our algorithms successfully leverage task structure to improve performance under noisy interpretations of the vocabulary. Our results provide a general framework for exploiting Reward Machines in partially observable environments.

2024-05-31
🤖 Paying to Do Better: Games with Payments between Learning Agents
In repeated games, such as auctions, players typically use learning algorithms to choose their actions. The use of such autonomous learning agents has become widespread on online platforms. In this paper, we explore the impact of players incorporating monetary transfers into their agents' algorithms, aiming to incentivize behavior in their favor. Our focus is on understanding when players have incentives to make use of monetary transfers, how these payments affect learning dynamics, and what the implications are for welfare and its distribution among the players. We propose a simple game-theoretic model to capture such scenarios. Our results on general games show that in a broad class of games, players benefit from letting their learning agents make payments to other learners during the game dynamics, and that in many cases, this kind of behavior improves welfare for all players. Our results on first- and second-price auctions show that in equilibria of the ``payment policy game,'' the agents' dynamics can reach strong collusive outcomes with low revenue for the auctioneer. These results highlight a challenge for mechanism design in systems where automated learning agents can benefit from interacting with their peers outside the boundaries of the mechanism.

2024-05-29
🤖 Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.

2024-05-29
🤖 STAT: Shrinking Transformers After Training
We present STAT: a simple algorithm to prune transformer models without any fine-tuning. STAT eliminates both attention heads and neurons from the network, while preserving accuracy by calculating a correction to the weights of the next layer. Each layer block in the network is compressed using a series of principled matrix factorizations that preserve the network structure. Our entire algorithm takes minutes to compress BERT, and less than three hours to compress models with 7B parameters using a single GPU. Using only several hundred data examples, STAT preserves the output of the network and improves upon existing gradient-free pruning methods. It is even competitive with methods that include significant fine-tuning. We demonstrate our method on both encoder and decoder architectures, including BERT, DistilBERT, and Llama-2 using benchmarks such as GLUE, Squad, WikiText2.

2024-05-28
🤖 Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or post-operative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk post-operative site. Target volume annotations adhere to established radiotherapy planning protocols, ensuring consistency across cases and institutions. For pre-operative meningiomas, the target volume encompasses the entire GTV and associated nodular dural tail, while for post-operative cases, it includes at-risk resection cavity margins as determined by the treating institution. Case annotations were reviewed and approved by expert neuroradiologists and radiation oncologists. Participating teams will develop, containerize, and evaluate automated segmentation models using this comprehensive dataset. Model performance will be assessed using the lesion-wise Dice Similarity Coefficient and the 95% Hausdorff distance. The top-performing teams will be recognized at the Medical Image Computing and Computer Assisted Intervention Conference in October 2024. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes.

2024-05-28
🤖 A Survey of Latent Factor Models in Recommender Systems
Recommender systems are essential tools in the digital era, providing personalized content to users in areas like e-commerce, entertainment, and social media. Among the many approaches developed to create these systems, latent factor models have proven particularly effective. This survey systematically reviews latent factor models in recommender systems, focusing on their core principles, methodologies, and recent advancements. The literature is examined through a structured framework covering learning data, model architecture, learning strategies, and optimization techniques. The analysis includes a taxonomy of contributions and detailed discussions on the types of learning data used, such as implicit feedback, trust, and content data, various models such as probabilistic, nonlinear, and neural models, and an exploration of diverse learning strategies like online learning, transfer learning, and active learning. Furthermore, the survey addresses the optimization strategies used to train latent factor models, improving their performance and scalability. By identifying trends, gaps, and potential research directions, this survey aims to provide valuable insights for researchers and practitioners looking to advance the field of recommender systems.